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Capturing the discontinuous shift by ∆ in the exact exchange-correlation (xc) potential is the
standard proposal for calculating the fundamental gap, Eg, from the Kohn-Sham (KS) gap, εg,
within KS density functional theory (DFT), as Eg = εg + ∆, yet this discontinuity is absent from
existing approximations. The ‘N -centered’ formulation of ensemble DFT artificially maintains a to-
tal electron number, N , in order to yield Eg not through a discontinuous shift in the xc potential but
via the ensemble-weight derivative of the xc energy. Within the N -centered approach we calculate
exact xc potentials for a one-dimensional finite system and show analytically that ∆ can in fact be
interpreted as a discontinuous shift in the exact N -centered ensemble xc potential, thereby extend-
ing to charged excitations an exact property of uncharged excitations. We show that applying the
Levy-Zahariev ‘shift-in-potential’ procedure in this context relocates the discontinuous shift to the
unimportant periphery of the system, so that the exact xc potential in effect is free of discontinuities
and thus the inability of a local functional to capture discontinuous behavior is inconsequential.

I. INTRODUCTION

Kohn-Sham [1] (KS) density functional theory [2]
(DFT) owes its success to its approximations, which
achieve an unprecedented balance of computational ef-
ficiency and accuracy for electronic structure properties
[3–10]. However, standard (semi-local) approximations
are notoriously unreliable for predicting the fundamental
gap [11, 12]. As such, to predict reliable gaps, in conjunc-
tion with a KS calculation, computationally expensive
methods outside of KS theory must be employed. These
methods, which bypass the need for nonlocal dependence
on the electron density within one’s approximation to
the exchange-correlation (xc) functional, use (more ex-
pensive) orbital-dependent functionals [13], e.g., hybrid
density functionals [14–29], which rely on a generalized
KS scheme, or the GW approximation within many-body
perturbation theory [30–35]. The extraction of accurate
gaps solely from a regular KS calculation [36–40] offers
the prospect of improved semiconductor, thermoelectric
material [10, 41–43] and photovoltaic [44–46] modeling
by drastically reducing the computational cost.

In principle, KS DFT can yield the exact fundamental
gap; in practice the exact xc energy of DFT and the cor-
responding xc potential of KS theory possess discontinu-
ous features which have a strong nonlocal dependence on
the electron density [5, 47–53] and hence are difficult to
capture in approximate functionals [11, 54–59]. Perdew,
Parr, Levy, and Balduz (PPLB) [47] proposed to cal-
culate the gap – the ionization potential (IP), I, minus
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the electron affinity (EA), A – within KS theory via the
discontinuous constant shift, ∆, in the multiplicative xc
potential, vxc(r), which occurs as the electron number,
N , infinitesimally surpasses an integer [47, 60], N , where

∆ = lim
δ→0+

(
vxc(r)|N=N+δ − vxc(r)|N=N−δ

)

= I −A− εN+1 + εN , (1)

εN is the KS highest occupied molecular orbital (HOMO)
energy and εN+1 is the KS lowest unoccupied molecular
orbital (LUMO) energy, both of the N -electron system.
∆, usually termed the ‘derivative discontinuity’, connects
the fundamental gap to the KS gap, εN+1−εN . However,
common density-functional approximations based on the
local or semi-local density are unable to capture the dis-
continuous shift in the xc potential when the electron
number infinitesimally surpasses an integer and hence do
not yield ∆ [61, 62].

Senjean and Fromager defined an ‘N -centered’ KS sys-
tem from which the exact fundamental gap can be calcu-
lated in principle [63, 64]. Within their auxiliary system
the electron number is fixed and integer with the pur-
pose of calculating the system’s fundamental gap from
the derivative (at fixed density) of the corresponding N -
centered ensemble xc energy with respect to the ensemble
weight rather than from a discontinuous shift in the xc
potential. The theory was designed so that the exact xc
potential does not have to shift discontinuously in order
to yield the gap and hence commonly used approxima-
tions to the xc energy, such as the local density approx-
imation (LDA), could in principle be employed reliably
in this context.

In this paper we study the exact N -centered approach:
We calculate the exact ensemble xc energy as a function
of the ensemble weight and the corresponding exact xc
potentials for a one-dimensional finite model system for
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which the many-body Schrödinger equation can be solved
exactly. We demonstrate both numerically and analyti-
cally that, when the exact ensemble xc potential is (arbi-
trarily) forced to asymptotically approach zero infinitely
far from the center of the system, it experiences discon-
tinuous shifts in the region of centralized density, just like
in the PPLB approach. Importantly, we show how these
shifts can be ‘relocated’ from this central region of the
system to the unimportant periphery via the exact Levy-
Zahariev (LZ) shift [65] within the N -centered approach,
even as the ensemble weight becomes infinitesimal.

Our investigation into the nature of the N -centered
method is organized as follows. For comparison, we first
consider the ubiquitous PPLB approach; in Sec. II we
present a 1D model system which consists of two same-
spin, interacting electrons in its ground state and cal-
culate the exact KS xc potential upon the addition of
a small fraction of an electron in order to observe the
shift in the potential by ∆. Next, in Sec. III, we briefly
review the established exact N -centered formalism. We
then calculate, in Sec. IV, charged excitation energies
for our model system via the N -centered approach both
exactly and employing an LDA: In Sec. IV A 1 we cal-
culate the IP and find the exact N -centered ensemble
xc potential as a function of the ensemble weight. Sec-
tion IV A 2 then employs a standard, weight-independent
LDA to the xc energy to find the IP for the same sys-
tem, which highlights the importance of the derivative
of the xc energy with respect to the ensemble weight.
In Secs. IV B 1 and IV B 2 we repeat these calculations
but now for the EA. In Sec. V we present an analytic
proof that ∆ can indeed manifest within the exact N -
centered ensemble xc potential as a discontinuous shift
and thereby extend Levy’s concept for neutral excita-
tions to charged excitations [66, 67]. We then summarize
our work in Sec. VI.

II. PERDEW, PARR, LEVY, AND BALDUZ

First let us study the PPLB approach in the absence of
approximation. For all our numerical examples we em-
ploy our iDEA code [68] which models electrons in 1D
that interact via the appropriately softened Coulomb in-
teraction wee(x, x

′) ≡ (|x− x′|+ 1)−1 [69]. The external
potential for our system corresponds to a model 1D atom
vext(x) = 3/(|x| + 1). Our system consists of two same-
spin electrons (N = 2) and as such we can calculate
the exact fully-correlated many-body wavefunction on a
real-space grid in 1D and the many-body total energy. In
order to find the exact many-body IP and EA of this sys-
tem we also calculate the exact many-body wavefunction
and energy of the anion (which consists of three same-
spin electrons) and the wavefunction and energy of ion
(i.e., the one-electron system). From these wavefunctions
we can calculate the exact many-body electron density –
both for the integer electron systems and as an ensem-
ble. The exact ensemble many-body density is given by
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FIG. 1. PPLB case: (Top) The change in the KS potential
upon the addition of δ electrons to the system; as δ → 0+ the
change tends to a uniform shift of height ∆ (numerical noise
on the far right a). (Bottom) The 2-electron KS system to
which δ electrons is added.
a We assume each xc potential decays ∝ − 1

|x| and we align the

overall constant shift of each potential such that
vs(|x| → ∞) = 0 without modeling an infinitely large system.

nδ(x) = (1 − δ)nN (x) + δnN+1(x), where ni(x) is the
many-body density of the i-electron system. From nδ(x)
we ‘reverse-engineer’ the KS equations via the algorithm
of Ref. 68 to find the corresponding exact xc potential
and KS energies for varying values of δ.

Employing the exact KS energies of the N -electron KS
system, we calculate the exact ∆ via Eq. (1). Figure 1
shows that as δ → 0+ the change in the KS potential
(vN+δ

s (x) − vNs (x)) tends to a uniform constant of mag-
nitude ∆ [53, 70]. In this case the N -electron KS poten-
tial is defined such that vN+δ

s (|x| → ∞) = 0. vN+δ
s (x)

possess a discontinuous shift which elevates the poten-
tial in the central region of the system. Note that as the
plateau tends to a uniform constant shift, the KS po-
tential still asymptotically approaches zero infinitely far
from the center of the system; as discussed in Refs. 53
and 70.

This discontinuous behavior is difficult to capture in
an approximate density functional and hence in practice
the PPLB approach is not used.

III. N-CENTERED ENSEMBLE APPROACH

We now turn to the N -centered approach. Following
Ref. 63, we start from the general two-weight formulation
of N -centered ensemble DFT where the ensemble density
is

n{ξ−,ξ+}(x) =

[
1− ξ−

N − 1

N
− ξ+

N + 1

N

]
nN (x)

+ ξ−nN−1(x) + ξ+nN+1(x). (2)
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By analogy with Ref. 64, we will refer to the special
cases {ξ−, 0} and {0, ξ+} as left and right N -centered
ensembles, respectively. In Sec. IV we study in detail the
left and then the right ensemble, for which we vary the
ensemble weights as such: When ξ+ = 0, 0 ≤ ξ− ≤ N

N−1 ,

and when ξ− = 0, 0 ≤ ξ+ ≤ N
N+1 .

The general (two-weight) ensemble energy is

E{ξ−,ξ+} =

[
1− ξ−

N − 1

N
− ξ+

N + 1

N

]
EN

+ ξ−EN−1 + ξ+EN+1. (3)

The IP and EA can be extracted separately from the en-
semble energy by differentiating with respect to ξ− and
ξ+; see Eqs. (7) and (11). The ensemble energy, E{ξ−,ξ+},
is a functional of the ensemble density n{ξ−,ξ+} which,
unlike the PPLB approach, integrates to the fixed (‘cen-
tral’) integral number of electrons, N . This many-body
density is exactly reproduced by the non-interacting KS
system:

n{ξ−,ξ+}(x) =
(

1− ξ−
N − 1

N
− ξ+

N + 1

N

) N∑

i=1

∣∣∣φ{ξ−,ξ+}i (x)
∣∣∣
2

+ ξ−

N−1∑

i=1

∣∣∣φ{ξ−,ξ+}i (x)
∣∣∣
2

+ ξ+

N+1∑

i=1

∣∣∣φ{ξ−,ξ+}i (x)
∣∣∣
2

, (4)

where
{
φ
{ξ−,ξ+}
i (x)

}
are the set of ensemble KS or-

bitals. As within the regular KS DFT approach, the
auxiliary KS system employs the Hartree-xc (Hxc) po-

tential, v
{ξ−,ξ+}
Hxc [n](x) := δE

{ξ−,ξ+}
Hxc [n]/δn(x), to ensure

that the non-interacting system yields the exact many-
body ensemble density, where

E
{ξ−,ξ+}
Hxc [n] = EH[n] + E{ξ−,ξ+}xc [n],

and EH[n] is the conventional (weight-independent)
Hartree functional. This formally exact deconstruction
may not be optimal for approximate functionals as ghost-
interaction errors [71–73] may be introduced. Alter-
natively one may use exact (orbital-dependent) expres-
sions for both Hartree and exchange ensemble energies
[74, 75] or opt for an alternative weight-dependent defi-
nition of the ensemble Hartree energy [76]. In this paper
we mainly focus on the exact N -centered approach; for
our LDA calculations we employ this deconstruction.

For brevity we adopt in the rest of this work the fol-
lowing shorthand notations when referring to ensemble
densities, energies, and density functionals:

{ξ−, 0} ≡ ξ−,
{0, ξ+} ≡ ξ+,
{ξ, ξ} ≡ ξ.

(5)

As a result, the left N -centered ensemble xc functional,
for example, will simply be denoted as

Eξ−xc [n] := E{ξ−,0}xc [n]. (6)

Similarly, E
ξ+
xc [n] := E

{0,ξ+}
xc [n] and Eξxc[n] := E

{ξ,ξ}
xc [n].

By design, the N -centered ensemble density integrates
to N , which is fixed with the aim of conveniently express-
ing ∆ = I −A− εN+1 + εN as a weight derivative where
the ensemble density is held constant [63, 64], as such

∆ =


 ∂E

ξ−
xc [n]

∂ξ−

∣∣∣∣∣
ξ−=0

+
∂E

ξ+
xc [n]

∂ξ+

∣∣∣∣∣
ξ+=0



n=nN

≡ ∂Eξxc[n]

∂ξ

∣∣∣∣
ξ=0,n=nN

.

In Sec. V we show analytically that ∆ can also be in-
terpreted, in the context of N -centered ensemble DFT,
as a derivative discontinuity, exactly like in the PPLB
approach.

IV. EXTRACTING CHARGED EXCITATION
ENERGIES

We now turn again to our model system and em-
ploy our exact many-body densities within the exact N -
centered formalism in order to calculate charged excita-
tion energies as a function of the ensemble weight. In
addition we calculate the corresponding exact ensemble
xc potentials and observe how they vary with the ensem-
ble weight.

Within this section we also employ a standard LDA
to the ensemble xc energy which completely neglects the
ensemble-weight dependence.

A. Ionization potential

1. Exact theory

We start from the general expression of the IP for
an N -electron system within the N -centered approach
– Eq. (33) in Ref. 63. By considering the left N -centered
ensemble we obtain

I = −εξ−N +

[(
ξ−
N

+ 1

)
∂E

ξ−
xc [n]

∂ξ−
− Cξ− [n]

]

n=nξ−

, (7)

where Cξ− [n] := C{ξ−,0}[n] is the analog of the LZ
shift in potential for N -centered ensembles [65] (note
that the notations of Eq. (5) have been employed). The
general two-weight expression for the ensemble density-
functional LZ shift is

C{ξ−,ξ+}[n] =
E
{ξ−,ξ+}
Hxc [n]−

∫
dx n(x)v

{ξ−,ξ+}
Hxc [n](x)∫

dx n(x)
.

(8)
We stress that, unlike in the conventional PPLB ap-

proach, the HOMO and LUMO energies (ε
ξ−
N and ε

ξ+
N+1,

respectively) are defined up to an additive constant. This
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is connected to the fact that the left and right N -centered
ensemble densities (nξ− and nξ+ , respectively) integrate
to the (fixed and integer) central number of electrons,

N . On the other hand, the LZ-shifted energies, ε
ξ−
N =

ε
ξ−
N + Cξ− [n]

∣∣
n=nξ−

and ε
ξ+
N+1 = ε

ξ+
N+1 + Cξ+ [n]

∣∣
n=nξ+

,
are truly unique and independent of any overall shift in
the potential.

We study the same 1D atom of Sec. II but now the elec-
tron number is fixed at N = 2 within the N -centered ap-
proach. First we compare the exact IP to that of Eq. (7).
We calculate the exact many-body ensemble density via
Eq. (2) considering only the left contribution and employ-
ing the exact many-body density for the N - and (N−1)-
electron systems. We then employ the ensemble density,
nξ−(x), and reverse-engineer the KS equations to find
the exact ensemble xc potential and KS energies. Our
results are shown in Fig. 2. We choose the ensemble KS
potential that tends to zero as |x| → ∞.

With this choice of KS potential we find that for 0 ≤
ξ− < N

N−1 , I = −εξ−N and hence

(
ξ−
N

+ 1

)
∂E

ξ−
xc [n]

∂ξ−

∣∣∣∣∣
n=nξ−

= Cξ− [n]
∣∣
n=nξ−

. (9)

This can be proven analytically, as follows: For 0 ≤ ξ− <
N
N−1 the nN (x) term dominates the asymptotic decay of

the density (Eq. (2)) far from the center of the system:

lim
|x|→∞

nξ−(x) =

(
1− N − 1

N
ξ−

)
nN (x) ∝ e−2

√
2I|x|.

(10)
In addition, in the asymptotic region, the KS orbital with

the highest energy (ε
ξ−
N ) will dominate the KS density

(Eq. (4)):

lim
|x|→∞

nξ−(x) =

(
1− N − 1

N
ξ−

) ∣∣∣φξ−N (x)
∣∣∣
2

∝ e−2
√
−2εξ−N |x|,

as, by design, v
ξ−
s (|x| → ∞) = 0. Hence, as this exponen-

tial decay equals that of Eq. (10) by definition, I = −εξ−N
and from Eq. (7), Eq. (9) must follow.

We now examine v
ξ−
xc [nξ− ](x) ≡ v

ξ−
xc (x) and v

ξ−
xc (x) +

Cξ− [n]
∣∣
n=nξ−

as ξ− → 2−
(

N
N−1 = 2

)
which is the fully

ionized limit, i.e., nξ−
ξ−= N

N−1−→ N
N−1nN−1 to see if there

is any discontinuity in the exact xc potential.
Figure 3 (Top) shows that with the LZ shift there

is no plateau which yields a discontinuous shift in the
xc potential in the region of the atom and hence ap-
proximate functionals which do not capture such discon-
tinuities could be employed as reliable approximations

to v
ξ−
xc (x) + Cξ− [n]

∣∣
n=nξ−

, unlike within the PPLB ap-

proach. On the other hand, Fig. 3 (Middle) shows v
ξ−
xc

which contains a plateau similar to that of Fig. 1. The

0.6

0.8

I

−
(
ε
ξ−
N + Cξ−[n]

∣∣
n=nξ−

) −ε
ξ−
N

Exact IP

0.0 0.5 1.0 1.5 2.0
ξ−

−0.4

−0.2

0.0
(

ξ−
N

+ 1
)

∂E
ξ−
xc [n]
∂ξ−

∣∣∣∣
n=nξ−

Cξ−[n]
∣∣
n=nξ−

FIG. 2. The exact KS HOMO energy (ε
ξ−
N ) is minus the exact

IP for 0 ≤ ξ− < N
N−1

. Each term of Eq. (7) is shown. The

calculation of I via Eq. (7) equals the exact IP for all ξ− as

expected. We choose v
ξ−
s (x) to asymptotically approach 0.

−1

0

v
ξ − x
c
(x
)
+

C
ξ −
[n
]∣ ∣ n

=
n
ξ
−

ξ− = 2

ξ− = 2− 10−8

ξ− = 2− 10−6

ξ− = 2− 10−4

−1

0

v
ξ − x
c
(x
)

ξ− = 2

ξ− = 2− 10−8

ξ− = 2− 10−6

ξ− = 2− 10−4

−30 −20 −10 0 10 20 30
x (a0)

−1

0

vξ−=2
xc (x)

nξ−=2(x)

FIG. 3. (Top) The exact xc potential plus the LZ shift. There
is no discontinuous shift in the potential as ξ− → 2− in the
region of centralized density (numerical noise on the far right).
(Middle) The exact xc potential. There is a discontinuous
shift in the potential as ξ− → 2−. (Bottom) The density and
xc potential for ξ− = 2.

LZ shift ‘relocates’ the discontinuity from the centralized
region to the edges of the system – a region with little
influence on the system’s properties [77] . As ξ− → 2−,
this plateau would become infinitely expansive, exactly
like for the PPLB case; see Fig. 1.

Figure 2 clearly shows the importance of the ensemble-
weight dependence in the xc energy when we employ
the ‘discontinuity-free’ LZ-shifted xc potential. Without
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0.5

1.0

ILDA

−ε
LDA,ξ−
N

Exact IP

−ε
ξ−
N

−ε
ξ−
N − Cξ−[n]

∣∣
n=nξ−

0.0 0.5 1.0 1.5 2.0
ξ−

−0.5

0.0

CLDA,ξ−[n]
∣∣
n=nLDA

ξ−

(
ξ−
N

+ 1
)

∂ELDA
xc [n]
∂ξ−

∣∣∣
n=nLDA

ξ−

FIG. 4. Same as Fig. 2 but an LDA to the xc energy has been

employed. ILDA is approximately equal to the exact −εξ−N −
Cξ− [n]

∣∣
n=n

ξ− for approximately 0 ≤ ξ− < 1.0 showing the
importance of the xc energy’s ensemble-weight dependence in

obtaining an accurate IP. ε
LDA,ξ−
N is inaccurate and hence a

cancellation of errors with the LDA LZ shift must occur.

the contribution from the ensemble xc energy, the LZ
shift significantly worsens the IP predicted from Eq. (7).
Therefore, if one wishes to remove discontinuous shifts
from the exact xc potential, one requires a reliable ap-
proximation to the ensemble-weight dependence in the
xc energy within the N -centered approach.

2. The local density approximation

Next we calculate the IP within the N -centered ap-
proach employing the LDA to the xc energy, which ne-
glects the weight dependence entirely. Our LDA to the
xc energy was parameterized from the 1D homogeneous
electron gas [78]. The LDA does not capture PPLB’s
discontinuous shift, ∆, in the xc potential. Therefore,
although it is unsuitable for predicting the gap within
the PPLB approach, it can be employed within the N -
centered approach.

Figure 4 shows the prediction for the IP evaluated via
Eq. (7) within the LDA. ILDA is comparable to the exact
LZ-shifted HOMO KS energy. Therefore, if an accurate
approximation to the weight derivative of the xc energy
were introduced, the LDA could yield a reliable predic-
tion for I. This highlights the importance of developing
reliable approximations to the xc energy which account
for the ensemble-weight dependence [74, 79].

We see in Fig. 4 that the LDA reproduces the LZ-
shifted HOMO energy well, especially when ξ− ≤ 1.
However, Fig. 5 shows that when ξ− = 2, the LDA LZ-
shifted xc potential is inaccurate, including the LDA LZ
shift. This is likely because for ξ− > 1 this LDA is em-
ployed for an ensemble well beyond the ground state sys-
tems from which it was parameterized. Despite this the
error in the LDA LZ-shifted HOMO energy is acceptable

−1

0

v
ξ − x
c
(x
)
+

C
ξ −
[n
]∣ ∣ n

=
n
ξ
−

Exact: ξ− = 2

Exact: ξ− = 2− 10−8

LDA: ξ− = 2

LDA: ξ− = 2− 10−8

−30 −20 −10 0 10 20 30
x (a0)

0.0

0.5
vLDA,ξ−=2
xc (x)

nLDA
ξ−=2(x)

FIG. 5. The LDA xc potential for ξ− → 2− and ξ− = 2. The
LDA xc potential does not visibly change as ξ− → 2. The
exact potential is shown for reference.

owing to a cancellation errors between the approximate
xc energy (which contributes to the LZ shift) and the
LZ-shifted potential which is overestimated in the region
of the atom and underestimated away from it.

B. Electron affinity

1. Exact theory

We now turn to the EA. We employ the right ensemble
system for which ξ+ is the ensemble weight; see Eq. (2).
The exact EA for the N -electron many-body system is
given by the following expression [63]:

A = −εξ+N+1 +

[(
ξ+
N
− 1

)
∂E

ξ+
xc [n]

∂ξ+
− Cξ+ [n]

]

n=nξ+

.

(11)
We model the same 1D atom as above. As before,

we calculate the exact many-body ensemble density via
Eq. (2), with ξ− = 0 and ξ+ allowed to vary, employing
the exact many-body density for the N - and (N + 1)-
electron systems. We then employ nξ+(x) and reverse-
engineer the KS equations to find the exact ensemble
xc potential and KS energies. Our results are shown in
Fig. 6 [77]: We compare our calculated EA to the exact
obtained via total energy differences of the N - and (N +
1)-electron systems. As before, we (arbitrarily) choose a

KS potential, v
ξ+
s (x), that asymptotically approaches 0

towards infinity. Note that the expression on the right-
hand side of Eq. (11) is invariant under a constant shift
in the KS potential, by design.

Like for the IP, ε
ξ+
N+1 is found to be independent of ξ+

for 0 < ξ+ ≤ N
N+1 . This is because the exact many-body

ensemble density decays as

lim
|x|→∞

nξ+(x) = ξ+nN+1(x) ∝ e−2
√
2A|x|
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0.2

0.4

0.6

A

−
(
ε
ξ+
N+1 + Cξ+ [n]

∣∣
n=nξ+

) −ε
ξ+
N+1

Exact EA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ξ+

−0.4

−0.3

(
ξ+
N

− 1
)

∂E
ξ+
xc [n]
∂ξ+

∣∣∣∣
n=nξ+

Cξ+ [n]
∣∣
n=nξ+

FIG. 6. The exact KS LUMO energy (ε
ξ+
N+1) is minus the

exact EA for 0 < ξ+ ≤ N
N+1

. The separated terms of Eq. (11)

are also shown. The calculation of A via Eq. (11) equals

the exact EA for all ξ+, as expected. We choose v
ξ+
s (x) to

asymptotically approach 0.

far from the center of the system for 0 < ξ+ ≤ N
N+1 . In

this asymptotic region, the KS orbital with the highest

energy (ε
ξ+
N+1) dominates the KS density provided ξ+ >

0, and hence

lim
|x|→∞

nξ+(x) = ξ+

∣∣∣φξ+N+1(x)
∣∣∣
2

∝ e−2
√
−2εξ+N+1|x|.

Therefore, as the many-body ensemble density and the

KS density are the same, A = −εξ+N+1 and

(
ξ+
N

+ 1

)
∂E

ξ+
xc [n]

∂ξ+

∣∣∣∣∣
n=nξ+

= Cξ+ [n]
∣∣
n=nξ+

,

for 0 < ξ+ ≤ N
N+1 .

We now examine v
ξ+
xc and v

ξ+
xc + Cξ+ [n]

∣∣
n=nξ+

as ξ+ →
0+ to observe if in this case there is a discontinuous shift
in the potential. As for the IP in Sec. IV A, we observe
no shift in the potential in the region of the centralized
electron density when the LZ shift is included, as ex-
pected [64]; see Fig. 7 (Top). Instead the shift occurs in
the outer region of the atom and as ξ+ → 0+ the steps
we see in Fig. 7 (Top) move further and further from the
atom towards infinity. Without the LZ shift we observe
a shift in the potential in the vicinity of the atom (Fig. 7
(Middle)), as for the IP case above. In this case it can be
shown that the height of the steps equals ∆ as ξ+ → 0+;
see Sec. V.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is
important for the EA prediction within the N -centered
system; see Sec. IV A 2.

−0.75

−0.50

−0.25

v
ξ + x
c
(x
)
+

C
ξ +
[n
]∣ ∣ n

=
n
ξ
+

ξ+ = 0 ξ+ = 10−8 ξ+ = 10−6 ξ+ = 10−4

−0.50

−0.25

0.00

v
ξ + x
c
(x
)

−30 −20 −10 0 10 20 30
x (a0)

−0.5

0.0

0.5 vξ+=0
xc (x)

nξ+=0(x)

FIG. 7. (Top) The exact xc potential plus the LZ shift. There
is no discontinuous shift in the potential as ξ+ → 0+ (numer-
ical noise on the far right). (Middle) The exact xc potential.
There is a discontinuous shift in the potential as ξ+ → 0+.
(Bottom) The density and xc potential for ξ+ = 0. We choose

v
ξ+
s (x) to asymptotically approach 0.

0.25

0.50

ALDA

−ε
LDA,ξ+
N+1

Exact EA

−ε
ξ+
N+1

−ε
ξ+
N+1 − Cξ+ [n]

∣∣
n=nξ+

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ξ+

−0.25

0.00 (
ξ+
N

− 1
)

∂ELDA
xc [n]
∂ξ+

∣∣∣
n=nLDA

ξ+

CLDA
ξ+

[n]
∣∣∣
n=nLDA

ξ+

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial

for obtaining an accurate EA. For reference the exact ε
ξ+
N+1 is

shown.

As for the IP, the LDA yields an accurate LZ-shifted
KS energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that
the LDA xc potential decays too quickly (a standard is-

sue of the LDA) which yields an error in ε
LDA,ξ+
N+1 , how-

ever, this error is cancelled by the LDA LZ shift, as in
Sec. IV A 2. Therefore, in this case, with the addition of
a reliable approximation to the ensemble-weight deriva-
tive of the xc energy, one could obtain an accurate EA
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−0.75

−0.50

−0.25

v
ξ + x
c
(x
)
+

C
ξ +
[n
]∣ ∣ n

=
n
ξ
+

Exact: ξ+ = 0

Exact: ξ+ = 10−8

LDA: ξ+ = 0

LDA: ξ+ = 10−8

−30 −20 −10 0 10 20 30
x (a0)

0.0

0.5 vLDA,ξ+=0
xc (x)

nLDA
ξ+=0(x)

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The
exact xc potential is shown for reference.

from the LDA within the N -centered approach.
For both the left and the right ensemble systems as

ξ → 0 the LDA LZ-shifted KS energies are reliable ap-
proximations to the exact LZ-shifted KS energies for the
N -electron system owing to a cancellation of errors be-
tween the LDA KS energies and the LDA LZ shift; see
Figs. 4, 5 and 8. Further investigation is required to
determine whether this cancellation of errors occurs for
other types of system. These results imply that with
an accurate local approximation to the ensemble-weight
derivative of the xc energy, in the spirit of previous works
on neutral excitations [74, 79], the N -centered approach
within the LDA could yield accurate fundamental gaps
for a low computational cost.

V. ‘LEFT-TO-RIGHT’ DISCONTINUOUS SHIFT
IN THE N-CENTERED

EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N -centered ensemble
DFT [63], it was emphasized that modeling derivative
discontinuities in order to recover the fundamental gap
from the KS gap is unnecessary. Instead, one should fo-
cus on the weight dependence of the ensemble xc energy.
Still, in the light of our numerical results and by analogy
with Gross-Oliveira-Kohn DFT [66, 80–82] for neutral ex-
citations, one may wonder if a clear and formal connec-
tion can be established between weight derivatives and
derivative discontinuities in the context of N -centered
ensemble DFT. Below we establish this connection.

The asymptotic behavior of the left and right
N -centered ensemble densities revealed that I =

−
(
ε
ξ−
N − v

ξ−
xc (|x| → ∞)

)
, for 0 ≤ ξ− < N

N−1 , and A =

−
(
ε
ξ+
N+1 − v

ξ+
xc (|x| → ∞)

)
, for 0 < ξ+ ≤ N

N+1 . In the

PPLB approach, the xc potential tends to zero infinitely
far from the center of the system, as a consequence of

Janak’s theorem. In the N -centered picture, the poten-
tial is unique up to a constant. If we make the (arbitrary)
choice that the N -centered ensemble xc potential always
tends to zero at infinite distance,

vξ−xc (|x| → ∞) = vξ+xc (|x| → ∞) = 0, (12)

then the LZ shift and weight derivative contributions to
the IP/EA compensate each other exactly (shown above),
which can be written more explicitly as follows:

E
ξ±
Hxc

[
nξ±

]
−
∫

dx v
ξ±
Hxc(x)nξ±(x) =

(ξ± ∓N)
∂E

ξ±
xc [n]

∂ξ±

∣∣∣∣∣
n=nξ±

. (13)

Note that, with the constraint in Eq. (12), v
ξ−=0
xc (x) =

v
ξ+=0
xc (x). As a result, by considering both ξ− = 0 and
ξ+ → 0+ cases in Eq. (13), we obtain by subtraction

∫
dx
(
vξ+→0+

xc (x)− vξ−=0
xc (x)

)
nN (x)

=

∫
dx
(
vξ+→0+

xc (x)− vξ+=0
xc (x)

)
nN (x)

= N


 ∂E

ξ+
xc [nN ]

∂ξ+

∣∣∣∣∣
ξ+=0

+
∂E

ξ−
xc [nN ]

∂ξ−

∣∣∣∣∣
ξ−=0




≡ N ∂Eξxc[nN ]

∂ξ

∣∣∣∣
ξ=0

,

(14)

which clearly shows that, as expected, v
ξ+→0+

xc (x) 6=
v
ξ+=0
xc (x). A consequence of Eqs. (12) and (14) is the

constant shift ∆ which manifests in the xc potential in
the region of the atom or molecule as ξ+ infinitesimally
increases above zero, as shown in Fig. 7 (Middle). The
same occurs in the PPLB approach when the number
of electrons within the system infinitesimally increases
above an integer; see Fig. 1. Therefore, Eq. (14) can be
simplified as follows:

∆

∫
dxnN (x) = N

∂Eξxc[nN ]

∂ξ

∣∣∣∣
ξ=0

,

thus leading to

∆ = vξ+→0+

xc (x)− vξ+=0
xc (x)

=
δE

ξ+
xc [n]

δn(x)

∣∣∣∣∣
n=nN ,ξ+→0+

− δE
ξ+
xc [n]

δn(x)

∣∣∣∣∣
n=nN ,ξ+=0

=
∂Eξxc[nN ]

∂ξ

∣∣∣∣
ξ=0

,

(15)

which shows that, within the N -centered picture, the
weight derivative ∆ manifests in the exact xc potential
as a derivative discontinuity, when switching from left to
right ensembles. Equation (15), which is a key result,
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is the analogue for charged excitations of Levy’s deriva-
tive discontinuity expression for neutral excitations (see
Eq. (29) in Ref. 66; see also Ref. 67).

In summary, if we force the N -centered ensemble xc
potential to asymptotically approach zero, we recover
IP/EA theorems which are formally identical to those
derived in PPLB. In this case, the exact KS HOMO and
LUMO energies are weight-independent and

I −A = ε
ξ+→0+

N+1 − εξ−=0
N

= ε
ξ+→0+

N+1 − εξ+=0
N (16)

= ε
ξ+=0
N+1 + vξ+→0+

xc (x)− vξ+=0
xc (x)− εξ+=0

N

= εN+1 − εN + ∆.

If we relax the constraint on the N -centered ensem-
ble xc potential at infinite distance, we can still define
a truly unique potential via the LZ shifting procedure

v
ξ+
xc (x)→ v

ξ+
xc (x) = v

ξ+
xc (x) + Cξ+ [n]

∣∣
n=nξ+

. In the latter
case, the derivative discontinuity ∆, which can be eval-
uated through an ensemble weight derivative, is moved
away from the system. Indeed, according to Eqs. (8),
(14), and (15),

vξ+→0+

xc (x)− vξ+=0
xc (x)

= vξ+→0+

xc (x)− vξ+=0
xc (x)

+

∫
dx
[
−vξ+→0+

xc (x) + v
ξ+=0
xc (x)

]
nN (x)

∫
dxnN (x)

= vξ+→0+

xc (x)− vξ+=0
xc (x)−∆,

(17)

which gives v
ξ+→0+

xc (x) = v
ξ+=0
xc (x) in the region of the

atom or molecule and, according to Eq. (12),

vξ+→0+

xc (|x| → ∞)− vξ+=0
xc (|x| → ∞) = −∆. (18)

VI. CONCLUSION

The ‘N -centered’ system corresponds to an ensemble
Kohn-Sham (KS) system in which the electron number is
fixed and integer. This constraint on the ensemble system
permits the fundamental gap to be calculated from the
KS gap, not through the usually unattainable ‘derivative
discontinuity’, ∆, which manifests in the exact exchange-
correlation (xc) potential as a discontinuous shift within
the usual Perdew, Parr, Levy, and Balduz (PPLB) ap-
proach [47], but instead via the ensemble-weight deriva-
tive of the N -centered xc energy.

We modeled the N -centered system exactly in 1D in
order to study the exact xc energy and corresponding xc
potential as a function of the ensemble weight (ξ). We
found that the xc potential can always be (arbitrarily)
forced to asymptotically approach zero infinitely far from
the center of the system. We employed this constraint to
prove analytically that ∆ manifests within the exact xc
potential of the N -centered ensemble as a derivative dis-
continuity, thus extending to charged excitations Levy’s
exact property of number-conserving excitations [66]. We
demonstrated numerically and analytically that the ex-
act Levy-Zahariev (LZ) shift ‘relocates’ this discontinuity
to the periphery of the system – a region with negligible
importance to the system’s observable properties.

We employed a standard 1D local density approxi-
mation (LDA) to the xc energy which completely ne-
glects the ensemble weight dependence. We found, for
our prototype system, that the LDA LZ-shifted KS en-
ergies were accurate for a significant range of ensemble
weights including ξ = 0 which corresponds to the regular
N -electron KS system.

Within the PPLB perspective the LDA is unreliable
because it does not exhibit the required discontinuous
shift in the xc potential and hence predicting the electron
affinity (EA) results in a substantial error. Additionally,
the LDA yields an inaccurate ionization potential (IP)
owing to the usual self-interaction error. From an N -
centered perspective, the LDA is much more reliable for
the LZ-shifted highest occupied and lowest unoccupied
KS energies; by design, the LDA’s inability to yield the
discontinuous shift in the xc potential is inconsequential.
We find that for ξ = 0 the LDA is remarkably accu-
rate for the LZ-shifted KS energies; the IP and EA are
inaccurate because the standard LDA is independent of
the ensemble weight, ξ, as expected. Recent work com-
bining finite (for introducing weight dependencies into
the functional) and infinite (for reducing finite-size ef-
fects) uniform electron gas models have yielded substan-
tial progress in the design of local ensemble functionals
for neutral excitations [74, 79]. This strategy can also be
applied to N -centered ensembles to yield an approxima-
tion to the ensemble weight dependence of the xc energy.
This offers the prospect of calculations which yield reli-
able fundamental gaps at a substantially lower cost than
with popular hybrid functionals.
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