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Abstract
Accurate models of electron correlation are key to understanding and predicting
important physical characteristics that underpin the development of many modern
quantum technologies. One of the most widely used approaches to modeling cor-
relation is the GW approximation within many-body perturbation theory (MBPT).
There are a large number of ‘flavors’ of the GW approximation, with varying levels
of computational cost and accuracy. Our aim is to elucidate the various deficiencies
and develop novel corrections in order to ameliorate such failings.

In this thesis we study simple model systems, whose properties can be determined
exactly by numerical solution of the Schrödinger equation, that exhibit the key phys-
ical properties present in real quantum systems such as atoms and molecules. We
then are able to compare the exact results to that of existing methods to identify the
fundamental source of shortcomings, using this insight to develop new approxima-
tions. We find that a common systematic error across all flavors of the GW approxi-
mation is the ‘self-screening’ error. We develop a conceptually and computationally
simple correction that removes the unwanted effect of this error on the charge den-
sity and ionization potential.

We demonstrate that MBPT methods exhibit Kohn’s concept of advantageous ‘near-
sightedness’, unlike the computationally cheaper Kohn-Sham density functional
theory (KS-DFT). We attribute this to the non-locality of the potentials used in MBPT.
We highlight that this allows approximations to more easily encapsulate advanced
aspects of exchange and correlation to be made within MBPT. Hybrid functionals
contain these non-local potentials and so benefit from this nearsightedness, and
when enforced to obey physically justified constraints, yield extremely accurate
densities and ionization potentials.

We also extend our investigation to the time-dependent properties of correlated
systems. A form of time-dependent many-body perturbation theory, that brings
together the simplicity of time-dependent DFT (TDDFT) and sophisticated correla-
tion effects of MBPT is investigated. We show that this approach significantly out-
performs common approximations to TDDFT without requiring the more onerous
computational cost of non-equilibrium Green’s function methods.
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Chapter 1

Introduction

One of the principal contributors to the rapid advancement of modern technology is
the successful quantum mechanical simulation of matter. One of the most challeng-
ing quantum phenomena to accurately and efficiently model is electron correlation.
Correlation is the part of the interaction between electrons that causes the motion of
one to effect the motion of all others, as they tend to exclude each other from their
surrounding vicinity due to their Coulomb repulsion. This effect gives rise to the
screening of the Coulomb interaction due to the response of mobile electrons. While
correlation contributes only a small amount to the total description of the interac-
tion of electrons, it is absolutely essential to describe many fundamental properties
of matter, such as the accurate prediction of the bonding of atoms to form molecules
[1, 2], the energies to break such bonds [3] and the London dispersion forces between
molecules [4].

Due to the extremely rapid miniaturization of semiconductor electronics, silicon
based integrated circuits are reaching the limit of Moores’ law [5], as the size of indi-
vidual components are becoming of the order of the length scale of tens of atoms [6].
Attempts overcome this limitation has lead to a drive in development of an alterna-
tive type of electronics that takes a bottom-up approach, constructing components
out of individual atoms and molecules rather than etching components into bulk
semiconductors. One such approach is molecular junctions, that consist of a single
molecule connected between two conducing leads [7, 8, 9]. However, it still remains
a challenge to accurately model the flow of electronic currents through these small
structures in the presence of a strong, quickly switching, electric field [10, 11, 12].
Such models require an accurate and computationally tractable description of cor-
relation.

The approach we take in this thesis is to study simple model systems, whose prop-
erties are designed to capture the physical features present in molecules, for which
the many-electron Schrödinger equation can be solved exactly. We then implement
existing approaches and compare to the exact results. This simplicity allows us to
delve into the fundamental quantities in order to gain a solid understanding of what
is the root cause of the known shortcomings of existing methods. This allows us to
develop new and improved methods that aim to overcome such deficiencies. We
then test these novel approaches for our set of challenging model systems to quan-
tify the improvements made and to what extent further advancement is needed.

There are several methods used to model the properties of molecules at equilibrium,
one of the most widely used is many-body perturbation theory (MBPT) [13, 14, 15].
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Chapter 1 Introduction

This theory describes how a system responds to the addition and removal of elec-
trons; an in-depth account of MBPT is presented in chapter 2. The simplest and
most practical approximation within MBPT is the Hartree-Fock method [16, 17, 18].
Despite its success at predicting molecular bond-lengths [12], the bond energy and
dissociation limit, molecular gaps and inter-molecular forces are wholly incorrect
[12]. This is due to the approximation totally neglecting electron correlation.

A usual approach to incorporating electron correlation into this picture is the GW
approximation [19]. While this does in some cases improve upon HF for the ad-
dition and removal energies of molecular systems [20], it is highly dependent on
which of the many ‘flavors’ of GW is used [20, 21]. The most sophisticated fully-self
consistent flavor is known to perform very poorly, due to the lack of ‘vertex terms’
[22, 23, 24]. Also, little is known about the performance of GW for the charge den-
sity, which is crucially important to modeling the time-dependent evolution of the
density and current density, as it is used as the starting point of such propagations.

In chapter 4 we investigate this problem in detail by comparing a wide range of
existing and novel flavors of the GW approximation to the exact when applied to
our set of characteristic model systems, in particular focusing on the quality of the
charge density. We show that the accuracy of the densities and ionization potentials
predicted vary considerably with the flavor used. We find an emerging systematic
error is prevalent across all flavors, especially in the fully-self consistent case. We
identity this as the self-screening error, a part of the self-interaction error present
in GW calculations that causes each electron to screen its own removal [22]. This
arises due to the neglect of vertex terms in the GW approximation to the self-energy
[25]. Explicit vertex corrections are tremendously expensive, and usually do not
significantly improve the performance of the calculations [23, 26, 27]. In chapter 5
we investigate this error in more detail to ascertain the root cause in the simplest
possible case, and proceed to develop a simple, computationally inexpensive vertex
correction [28]. In tests, this removes the self-screening errors in the density and
ionization potential. We outline what further improvements are needed beyond our
vertex correction.

In chapter 6 we illustrate that, unlike Kohn-Sham density functional theory [29, 30,
31], many-body perturbation theory methods such as Hartree-Fock and the GW ap-
proximation exhibit Kohn’s concept of nearsightedness [32]. This means that the
potential describing one subsystem needs not contain any additional features due
to the presence of surrounding subsystems. This is of particular importance when
modeling molecules [33]. We find that this is due to the spatial non-locality of the
MBPT potentials. We illustrate, using a simple model system, that pathological fea-
tures needed in exact Kohn-Sham theory are not required in the potentials of MBPT.
We suggest that this allows for more advanced approximations to exchange and cor-
relation to be formulated within MBPT. Hybrid functionals build upon the non-local
exact exchange potential of Hartree-Fock, and hence also benefit from this nearsight-
edness. In chapter 7 we demonstrate that hybrid functionals that are designed to
obey physically justified constraints yield extremely accurate densities [34].

A key theory when modeling the currents that form when systems are driven out of
equilibrium by electric fields is time-dependent density functional theory (TDDFT)
[35]. While in principle exact, this theory is requires approximation, most com-
monly by the adiabatic local density approximation (LDA). When used to predict
the conductance properties of molecular junctions the adiabatic LDA is totally inad-
equate [12], this is due in part to the neglect of the memory effects required by exact
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Chapter 1 Introduction

TDDFT. A usual alternative to TDDFT is the non-equilibrium Green’s function ap-
proach via the propagation of the two-point Kadanoff-Baym equations [36, 37, 38].
This approach, while much more accurate than TDDFT, is limited due to the oner-
ous computational cost; in particular the requirement to store the two-point Green’s
function, which requires several terra-bytes for even small molecular systems of
simulation times of the order of ten femto-seconds [39], although optimizations are
being developed [39].

In chapter 8 we apply our approach to the development of methods to compute
time-dependent densities for a range of model systems driven out of equilibrium
with an external perturbing field. We propose methods that exploit the simplicity
and computational ease of propagating single-particle orbitals through time, as in
the TDDFT case, but with potentials inspired from MBPT methods. In tests we find
these methods yield much more accurate densities than the adiabatic LDA, with-
out the demanding computational cost of propagating the non-equilibrium Green’s
functions.
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Chapter 2

Theory of interacting electrons

2.1 Single-particle quantum mechanics

2.1.1 The wavefunction

The wavefunction of a single electron system fully describes the state of a system
and is denoted

ψ (x) , (2.1)

where ψ (x) must be a smooth, continuous, complex valued function1. The state
of the system evolves with time and is represented by the time-dependence of the
wavefunction

ψ (x, t) . (2.2)

The physical interpretation of the wavefunction is through the probability density
ρ(x). For a system in state ψ (x) this is given by

ρ (x) = |ψ (x)|2 . (2.3)

The integral of this quantity tells us the probability of finding the electron between
points x = A and x = B in our system

P (A, B) =
∫ B

A
ρ (x) dx. (2.4)

2.1.2 Observables and operators

We will now illustrate how to determine physical properties of a system that is in a
state ψ (x).

Every observable A has a corresponding Hermitian operator Â. As Â is Hermitian it
has an associated set of orthonormal eigenfunctions {φi} and set of real eigenvalues
{ai}, these sets are solutions to the operator’s eigenequation

Âφi = aiφi. (2.5)

1This is written in one dimension (and will remain in one dimension throughout this section for
simplicity of notation), but in general the wavefunction is a function of all the generalized coordinates
of the system (e.g. ψ (r, θ, φ)).
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As {φi} are orthonormal ∫
∀

φ∗i φjdx = δij.2 (2.6)

If the state of the system is ψ (x), we can determine the probability of observing the
value of A to be ai. As {φi} form a complete set, the wavefunction can be written in
terms of the set of eigenfunctions of Â as a basis:

ψ = ∑
i

ciφi. (2.7)

The system is now defined by a set of probability amplitudes {ci} in the basis of Â,
these are determined by

ci =
∫
∀

φ∗i (x)ψ(x)dx. (2.8)

The probability of the value of A being observed to be ai is

P(ai) = |ci|2 . (2.9)

The probability of observing all other non-eigenvalues is zero, therefore the value of
A is quantised rather then continuous. The expectation value of the observable A is
then

〈A〉 =
∫
∀

ψ∗(x)Âψ(x)dx (2.10)

= ∑
i
|ci|2 ai. (2.11)

If the system is in an eigenstate j of Â then the expectation value is then simply aj.
The process of determining properties of an observable A of a system in a state ψ is
summarized in the following process diagram:

(1)
(2)

(3) (1) (4)

Figure 2.1: Process diagram describing how to determine values of an
observable A of a system in a state ψ where step (1) is given by equation
2.8, step (2) by 2.10, step (3) by 2.5 and step (4) by 2.9.

2.1.3 Time-evolution of the wavefunction

We have shown how to calculate the physical properties of a system in a state ψ.
To determine how these properties evolve with time the wavefunction is evolved
in time to give ψ (x, t) and then the process outlined in figure 2.1 can be applied at
given time.

The single-particle Hamiltonian is defined as

Ĥs = K̂s + V̂ = − h̄2

2m
∂2

∂x2 + Vexternal (x) . (2.12)

2Where ∀ denotes the integral over all space.
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Where the system is defined by the external potential energy Vexternal (x). We can
determine the eigenfunctions and eigenvalues of this operator by solving its corre-
sponding eigenequation

Ĥsφi = Eiφi. (2.13)

This special case of equation 2.5 is called the Time-Independent Schrödinger Equa-
tion (TISE). If this system is in the lowest energy eigenfunction of this Hamiltonian,
we say that it is in the ground-state. The state of a system can then be written in the
basis of Ĥs:

ψ = ∑
n

cnφn (2.14)

As the state of the system evolves with time the probability amplitudes vary with
time

ψ (x, t) = ∑
n

cn (t) φn (x) , (2.15)

where the state that the system was initially prepared in ψ (x, 0) determines the
initial values of the probability amplitudes

cn (0) =
∫
∀

φ∗n (x)ψ (x, 0) dx. (2.16)

The system evolves in time according to the Time-Dependent Schrödinger Equation
(TDSE):

ih̄
∂ψ

∂t
= Ĥsψ (2.17)

Lets us consider an electron in one of the eigenstates ψ (x, 0) = φs (x) where φs is
one of the eigenfunctions of the Hamiltonian Ĥs. This means that the particle is
resting in the energy state of energy Es as shown the figure below.

Figure 2.2: Energy diagram of an electron occupying energy state Es

We now ask what happens if we perturb the system by turning on a driving poten-
tial at t = 0. What is the probability of the electron being excited to another energy
state Ek after a time t due to this perturbation?
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Figure 2.3: Probability of an electron being excited to state Ek from Es

As the excitation only happens when the wavefunction collapses to the excited state,
before the collapse the electron is being excited to all states simultaneously, we say
the system is exploring excited states. The perturbation can be considered a pertur-
bation to the system’s Hamiltonian

Ĥ′ = Ĥs + ˆ∆H. (2.18)

Written out fully this becomes

Ĥ′ = − h̄2

2m
∂2

∂x2 + Vexternal (x) + ∆V (x, t) . (2.19)

The system will evolve according to the TDSE. This causes the probability ampli-
tudes of each of the eigenstates of our system to evolve with more that just a phase
factor. This represents the system exploring excited states

ψ (x, t) = ∑
n

cn (t) e−
i
h̄ Entφn (x) . (2.20)

We can now solve the TDSE to determine this trajectory of the probability ampli-
tudes cn (t).3

3We now have the phase factor taken out of the function cn (t) for convenience. Also note that the
eigenstates φn are still the eigenstates of the unperturbed system.
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2.2 Many-particle quantum mechanics

2.2.1 Non-interacting particles

So far we have discussed extracting the ground-state and time-dependent properties
of a system that contains only one electron. Now we will investigate systems of
several electrons. Initially we will consider the Coulomb force between the electrons
to be zero as some new quantum mechanical effects occur even for non-interaction
particles, and so for simplicity we will study these separately. The wavefunction of
our N particle system is written as 4

Ψ(x1, x2, . . . , xN) (2.21)

And from this we can determine the probability density of finding a single electron:

ρ(x) =
∫
∀
· · ·

∫
∀
|Ψ(x, x2, . . . , xN)|2dx2 . . . dxn (2.22)

and from this we can determine the charge density n(x):5

n(x) = Neρ(x) (2.23)

who’s integral is the total charge between points A and B in system

Q (A, B) =
∫ B

A
n (x) dx. (2.24)

It is important that when evaluating the probability density using equation 2.22 that
it does not matter which xi is replaced with x and is not integrated over (we picked
x1 in this case). This is because electrons are indistinguishable particles and when
we observe an electron in a given region of our system, we cannot determine which
electron we observed6. As our electrons are not interacting we are able to assemble
the wavefunction from the single electron states {φi} (here called single-particle or-
bitals), but there are a few ways we can choose to do this and it is important that we
choose the way that keeps our electrons indistinguishable. We will show that the
only way to do this is to build the wavefunction in such a way that obeys the Pauli
exclusion principle.

2.2.2 The Pauli exclusion principle

Pauli’s exclusion principle states that no two identical fermions can occupy the same
quantum state. In a two electron system this can be written in the position basis as

Ψ(x, x) = 0, (2.25)

and more generally
Ψ(x1, x2) = −Ψ(x2, x1). (2.26)

4The way we determine the physical properties of this state for an observable A is the same as in
Figure 2.1.

5Where here e is the charge of the electron.
6Of course this only applies to electron with like-spin. Opposite spin electrons are ‘distinguish-

able‘ fermions.
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Therefore the many-body wavefunction must be antisymmetric upon exchange of
particles. We will show that obeying this principle enforces indistinguishably of
our electrons. Let’s choose a way of constructing the wavefunction from the set of
single-particle orbitals that does not obey this principle; a product state

ΨPS(x1, x2) = φ1(x1)φ2(x2). (2.27)

If we then calculate the charge density using equations 2.22 and 2.23 it depends on
which value of x we choose to integrate over

n(x1) = 2e|φ1(x1)|2 (2.28)

n(x2) = 2e|φ2(x2)|2. (2.29)

Therefore the electrons are not indistinguishable, as by experimentally measuring
the charge density we can determine which electron we are observing. Now let us
instead choose a way to construct the wavefunction that obeys the Pauli exclusion
principle, the Slater determinant (SD)

ΨSD(x1, x2) =
1√
2

∣∣∣∣φ1(x1) φ2(x1)
φ1(x2) φ2(x2)

∣∣∣∣ . (2.30)

Now when we evaluate the charge density we yield

n(x1) = |φ1(x1)|2 + |φ2(x1)|2 (2.31)

n(x2) = |φ1(x2)|2 + |φ2(x2)|2. (2.32)

So obeying the Pauli exclusion principle ensures the electrons remain indistinguish-
able, this means that two indistinguishable electrons cannot occupy the same or-
bital, as the SD of such a case would yield a zero wavefunction. This effect, of
multiple electrons (of the same spin) being forbidden to be in the same state is some-
times referred to as Pauli repulsion, and is purely a quantum effect between identical
fermions (even when there is no Coulomb force present). This effect is called a re-
pulsion due to the effect it has on the ground-state density of the system, as shown
in figure 2.4.
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Figure 2.4: Demonstration of the Pauli repulsion for a model 1-
dimensional non-interacting two-electron atom, where the electrons are
treated as having the same spin (like-spin). Panel (a) shows the external
potential of the model atom, the lowest two non-interacting orbitals φ0
and φ1 and the corresponding eigen-energies E0 and E1. In this case the
Pauli exclusion principle is disobeyed and both electrons occupy state
0. Panel (b) shows the same as (a) but with the Pauli exclusion princi-
ple being obeyed, with each electron occupying its own orbital. Panel (c)
compares the density of both cases. Switching from the principle being
disobeyed to obeyed causes the electrons to appear to repel, as the den-
sity spreads out from the center of the well. This is why the effect is called
the Pauli repulsion. It is worth noting that this effect is occurring despite
the complete lack of Coulomb repulsion.
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Therefore identical electrons (of like-spin) cannot occupy the same orbital and expe-
rience a Pauli repulsion. However, electrons of opposite-spin are not indistinguish-
able and therefore can occupy the same orbital and do not feel such a repulsion. So
when filling non-interacting states with electrons, there can be one spin-up and one
spin-down in each orbital.

2.2.3 The Coulomb interaction

We have shown that the many-body wavefunction of a non-interacting system of
like-spin electrons can be constructed using a Slater determinant of single-particle
orbitals, for example the general two electron case is given by

ΦSD
nm(x1, x2) =

1√
2

∣∣∣∣φn(x1) φm(x1)
φn(x2) φm(x2)

∣∣∣∣ . (2.33)

An alternative way this wavefunction can be computed is by finding the eigenfunc-
tions of the many-body non-interacting Hamiltonian

Ĥ = K̂ + V̂ = − h̄2

2m ∑
n

∂2

∂x2
n
+ ∑

n
Vext(xn), (2.34)

ĤΦnm = EnmΦnm. (2.35)

We now add in the Coulomb interaction into the Hamiltonian, by considering the
interaction between all pairs of electrons7

Ĥ = K̂ + V̂ + Û = − h̄2

2m ∑
n

∂2

∂x2
n
+ ∑

n
Vext(xn) + ∑

(n,m),n 6=m

e2

4πε0(|xn − xm|+ 1)

(2.36)

ĤΨi = EiΨi (2.37)

Note that unlike the non-interacting case the interacting wavefunction is in most
cases not able to be written as a single Slater Determinant of single-particle orbitals,
due to the fact that each electron repels all other electrons and thus effects their
energetics, and so the electrons cannot be treated as independent particles.

2.2.4 The Born-Oppenheimer approximation

In order to model a real, large-scale quantum system such as a molecule, we invoke
the Born-Oppenheimer approximation (BOA). This states that the motion of the nu-
clei is negligible when compared to the motion of the electrons due to the much
larger mass. Therefore the nuclei are simply included in the system’s external po-
tential Vext. In order to find the ground state of a system we first guess the location
of all the nuclei in the system, and solve the many-body Schrödinger equation to
obtain the ground-state electron energy and charge density. We then minimize the

7The Coulomb term includes +1 in the denominator, as we are discussing the problem in 1D, and
thus must use the ‘softened’ Coulomb interaction, which simulates the interaction of electrons in a
nano-wire. In the 3D case the term would be the usual Û = e2/4πε0|r|2.
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ground-state energy with respect to the nuclei positions using the process of struc-
ture optimization via gradient decent. This then gives us the most energetically
favorable configuration of nuclei. The ground-state energy and electron density can
then be calculated using

ĤΨ0 = E0Ψ0, (2.38)

and from this the electronic structure of the system can be obtained. If we want
to compute the time-dependent properties of this system in response to a given
perturbation ∆V we begin with the system in the ground-state, and then evolve
with time using the time-dependent many-body Shrödinger equation

ih̄
∂Ψ
∂t

= Ĥ′Ψ, (2.39)

where Ĥ′ = H + ∆V. So if we can solve the time-independent and time-dependent
Schrödinger equation for a given system we can determine all of its physical proper-
ties. For example the total energy of the system, how it responds to an electric field
or when illuminated with light, or the energy required to add and remove electron
etc.

The problem is that in practice, these equations become intractably difficult to solve
for systems of more than a few electrons, due to the unfavorable computational scal-
ing. In order overcome this issue there are methods that allow us to approximately
determine the physical properties of systems, without having to solve the many-
body Shrödinger equation directly. Two such methods are many-body perturbation
theory (MBPT), which considers how a system responds to the addition and removal
of electrons, and Kohn-Sham density-functional theory (KS-DFT), which considers
modeling a fictitious system of non-interacting electrons, that has the same ground-
state charge density as the real interacting system.

22



Chapter 2 Theory of interacting electrons

2.3 The variational principle

In order to begin approximating the solution to the many-body time-independent
Schödinger equation (MB-TISE) to obtain the ground-state wavefunction of a system
of interacting electrons we make use of the variational principle. Let us calculate the
expectation value of the total energy of our system in the state Ψ,8

〈E〉 = 〈Ψ|Ĥ|Ψ〉. (2.40)

If this system is in the ground-state Ψ0 this gives us the ground-state energy of the
system,

E0 = 〈Ψ0|Ĥ|Ψ0〉, (2.41)

where E0 is the lowest possible eigenstate of Ĥ. We can then define the following
functional of the many-body wavefunction:

E[Ψ] = 〈Ψ|Ĥ|Ψ〉. (2.42)

The variation principle therefore states that the minimum of this functional with
respect to the wavefunction gives us the ground-state energy of our system,

E0 = min
Ψ

{
〈Ψ|Ĥ|Ψ〉

}
. (2.43)

Therefore, if we search over all possible wavefunctions, we will eventually arrive at
the global minimum of E[Ψ], which is the ground-state many-body wavefunction
and from this all ground-state properties of the system can be computed.

Figure 2.5: Illustration of the functional E[Ψ] along with the ground-
state energy E0 shown as the minimum of this functional, along with the
ground-state wavefunction Ψ0.

8This is the form of equation 2.10 with Dirac notation

23



Chapter 2 Theory of interacting electrons

2.3.1 The Hartree approximation

As a first attempt we will limit the wavefunction to taking the form of a product
state of single-particle orbitals,

ΨPS(x1, x2, . . . , xN) = φ1(x1)φ2(x2) . . . φN(xN). (2.44)

This greatly reduces the amount of wavefunction space we need to look through
when performing the minimisation as shown in equation 2.43. Performing this min-
imization gives us the single-particle Hamiltonian (termed the ‘Hartree’ Hamilto-
nian ĤH

s ) whose eigenfunctions are the {φi} needed to construct the lowest energy
possible product-state wavefunction (equation 2.44)

ĤH
s φi = εiφi, (2.45)

where ĤH
s is a functional of the charge density

ĤH
s [n] = K̂s + V̂ext + V̂H[n], (2.46)

VH[n] is called the Hartree potential and is a functional of the density

VH[n](x) =
∫
∀

U(x, x′)n(x′)dx′. (2.47)

These equations can be solved self-consistently; firstly a guess is made for the or-
bitals {φi} and thus the charge density n. This allows us to compute the single-
particle Hamiltonian using equations 2.46 and 2.47. Then we solve the eigenequa-
tion 2.45 to give a new set of orbitals. This is then repeated until convergence is
reached.

Figure 2.6: Illustration of minimizing the functional E[Ψ], showing the
reduction of the wavefunction space when restricted to a product state
(PS), along with the Hartree approximation to the total energy EH

0 and
wavefunction ΨH

0

The physical interpretation of this method is that our system is treated as a system
of non-interacting electrons, and that each feels a mean field potential due to the
Coulomb potential of all other electrons in the system (including itself). This po-
tential is the same for all electrons in the system. This approximation has three key
failings:
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1. As the Hartree potential is local (is simply multiplied by the orbital in the
eigenequation) every electron must feel the same potential. This means that
each electron feels its own Coulomb potential, as well as the other electrons in
the system. This error is termed the self-interaction error (SIE).

2. As we assume the wavefunction takes the form of a product state, it does not
obey the Pauli exclusion principle (PEP), and thus the Pauli repulsion between
the electrons is neglected entirely.9

3. Our electrons are treated as moving independently to each other in a mean
field. In reality each electron affects the energetics of the surrounding electrons
due to the Coulomb repulsion, this correlation of the motion of the electrons is
also entirely neglected.

We now move onto a substantially better approximation, that ameliorates some of
these serious flaws.

2.3.2 The Hartree-Fock approximation and exchange

We will now go beyond the Hartree approximation by directly addressing issue
2, and extend the approximation to obey the PEP. This problem stemmed from us
constraining the wavefunction to be a product state. We will now instead limit the
wavefunction to taking the form of a Slater determinant

ΨSD(x1, x2, . . . , xn) =
1√
N!

∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) . . . φn(x1)
φ1(x2) φ2(x2) . . . φn(x2)

...
... . . .

...
φ1(xn) φ2(xn) . . . φn(xn)

∣∣∣∣∣∣∣∣∣ (2.48)

this gives us a much wider region of wavefunction space to search over. If we
then apply this to the variational principle to determine that Slater determinant that
gives us the minimum total energy we obtain a new single-particle Hamiltonian
(now termed the ‘Hartree-Fock’ Hamiltonian ĤHF

s ) whose eigenfunctions are the
{φi} needed to construct the lowest energy possible Slater determinant wavefunc-
tion (equation 2.48). These are obtained by solving the Hartree-Fock Hamiltonian’s
eigenequation,

Ksφi(x) + Vexternalφ(x) + VH[n](x)φi(x) +
∫
∀

Σx[{φi}](x, x′)φi(x′)dx′ = εiφi. (2.49)

where Σx[{φi}](x, x′) is called the exact non-local exchange potential (or sometimes
the Fock operator10) and is a functional of the occupied single-particle orbitals. This
potential is called non-local due to the way it acts on the eigenfunctions: it is not
simply a direct multiplication (like in the Hartree potential case) but is integrated
over the orbital. This allows each electron in the system to feel a different effective

9When the self-consistent Hartree method is used in practice, it is useful to choose to occupy each
(like-spin) electron in each single-particle orbital. And once self-consistency is reached, construct the
wavefunction from a Slater determinant (SD) of these Hartree orbitals. This ensures that the PEP is
obeyed. Although the PEP is obeyed this is not the optimal SD that gives us the minimum energy, and
hence this can be though of as only an approximate Pauli repulsion felt by non-interacting particles.
Computing the optimal SD is discussed in the next section.

10When called the Fock operator, the symbol F is usually used instead of Σx
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potential, whereas a local potential is felt by every electron identically. This addi-
tional freedom came from us not restricting the wavefunction to a product state,
but instead a Slater determinant. As this exact exchange potential is non-local it
depends explicitly on the orbitals, rather than the density and is given by

Σx[{φi}](x, x′) = −
occ

∑
n

φn(x)φ∗n(x′)U(x, x′). (2.50)

These equations can be solved self-consistently in the same way as the Hartree
equations, except the exchange operator is included in the Hamiltonian, and is con-
structed from the occupied orbitals in the previous iteration.

Figure 2.7: Illustration of minimising the functional E[Ψ], showing the
reduction of the wavefunction space when restricted to a Slater deter-
minant (SD), along with the Hartree-Fock approximation to the total en-
ergy EHF

0 and wavefunction ΨHF
0 as can be seen in comparison to figure

2.6, this allows a much more accurate wavefunction and gives an energy
much closer to the exact energy.

The physical interpretation of the exchange potential is firstly, that the electrons
now correctly obey the PEP, and experience a Pauli repulsion that is the closest pos-
sible11 to that as felt by the interacting electrons. This is not exact, as in reality the
electrons cannot be treated as independent particles and thus experience a screened
Pauli repulsion as each electron causes the surrounding electrons to become excited
out of their single particle lowest states12. Secondly, as each electron is now able
to feel a separate potential, the self interaction error present in the Hartree approxi-
mation is corrected, as each electron now in the exchange term, removes the part of
the Hartree potential that was due to its own presence. We can now summarize to
what extent the Hartree-Fock approximation has corrected three key failings from
the previous section:

1. The self-interaction error is entirely corrected. This is because the exchange
potential is non-local and thus each electron sees an effective exchange poten-
tial, part of which acts to cancel out the part of the Hartree potential due to its
own presence.

11Given we are restricted to a Slater determinant wavefunction
12This is beyond what can be captured by a Slater determinant wavefunction
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2. The electrons now correctly obey the Pauli exclusion principle.

3. The electrons are still treated as moving independently to each other, which
is incorrect. In order to correctly take account of the screening of the Pauli
repulsion, and thus correlation of the electrons we must move beyond an in-
dependent particle picture, and beyond limiting the wavefunction to a single
Slater determinant.

2.3.3 Full configuration interaction and correlation

We will now go beyond the single-particle picture, in order to take account of the
correlation of the electrons. If we consider the Hartree-Fock wavefunction, it is the
Slater determinant of the lowest energy single-particle orbitals. For example, for a
two electron like-spin system with occupied single particle orbitals φ1 and φ2 the
wavefunction is

Φ12(x1, x2) =
1√
2

∣∣∣∣φ1(x1) φ1(x2)
φ2(x1) φ2(x2)

∣∣∣∣ . (2.51)

If we consider the general Slater-determinant Φnm, it forms a complete set of func-
tions. Therefore any exchange-antisymmetric function can be written as an infinite
weighted sum of this set, including our many-body ground-state wavefunction13:

Ψ0(x1, x2) = ∑
nm

cnmΦnm(x1, x2). (2.52)

This equation is at the heart of describing correlation, as it states that the ground-state
of a interacting system of electrons, can be treated as an excited state of a system of non-
interacting electrons. The full configuration interaction method involves choosing
a basis set of Slater determinants (usually Hartree-Fock, as its lowest energy state
Slater determinant is the closest as possible to the many-body wavefunction.) and
then minimizing the total energy by varying the set of probability amplitudes. This
method is in principle exact, although it is computationally very costly. The physical
interpretation of this method is that the system of non-interacting electrons is in an
excited state, as each electron effects the dynamics of the rest, due to their respective
Coulomb repulsion. This now yields a method that corrects the remaining issue 3.
This method of going beyond a single-particle picture is onerously expensive. An
alternative approach to accounting for electron correlation is the Green’s function
based GW method, which can be feasibly used to compute the correlation effects of
large scale systems.

13for a general N electron system this would be a function of (x1, x2, . . . , xN) and the sum would
be over nm . . . .
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2.4 Many-body perturbation theory

2.4.1 The many-body Green’s function

The central concept in many-body perturbation theory is the many-body Green’s
function G. G(x, x′, t, t′) is the probability amplitude that, if one electron is added
to a many-body system at time t and removed at time t′ it has propagated from po-
sition x to position x′. That is, the probability that when we added the electron at
t it localized at x, and when we removed it at t′ is was found at x′. This quantity
describes the charged, one-body excitations14 of a many-body system; the energy
to add and remove single electrons, and how a systems responds to such perturba-
tions. As we are only considering the system’s external potential to be fixed in time,
it is time-symmetric and hence the Green’s function only depends of the difference
in time between electron addition and removal, and so is written G(x, x′, t′ − t).

We will investigate the Green’s function of a system of non-interacting electrons
first, this is called the non-interacting Green’s function and is denoted G0. Let us
consider two non-interacting like-spin15 electrons in a model atom, illustrated in
Figure 2.8.

0.0

0.1

0.1

0.2

0.3

0.4

6

Figure 2.8: Illustration of the two non-interacting electron model atom.
The external potential has the form of the 1D softened Coulomb interac-
tion. The single-particle eigenvalues of this system εi are shown, with a
solid or hollow dot indicating whether the orbital is occupied or unoc-
cupied respectively. The energy scale is defined such that the chemical
potential (dotted line) is at zero.

If at a time t we now add an electron to this system it may only fill a currently un-
occupied state due to the Pauli exclusion principle. Lets consider it fills unoccupied
state m, the probability amplitude that the added electron was added to the system
at point x is16

φm(x)e−iεmt. (2.53)

14excitations due the addition or removal of one electron.
15so each orbital only contains at maximum one electron for simplicity.
16From here on in we will choose to use Hartree atomic units (a.u.) h̄ = e = m = 1

4πε0
= 1, where

e is the charge of the electron, m is the mass of the electron and ε0 is the permittivity of free space.
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If we then remove the electron at time t′ the probability amplitude that it is found at
x′ is

φ∗m(x′)eiεmt′ . (2.54)

Therefore, the total probability amplitude of propagation of the added electron from
space-time point (x, t) to (x′, t′) is the product of these two probability amplitudes.
In this case we chose unoccupied orbital m to be the orbital the added electron fills,
in reality however we must take account of the fact it could occupy any of these
orbitals, and so we must perform a sum over all possible unoccupied orbitals to
give

unocc

∑
n

φn(x)φ∗n(x′)eiεn(t′−t). (2.55)

Now we consider what this means for t′ < t. This means that the electron was
removed before it was added. This can be thought of as adding a hole to the system,
and measuring the probability amplitude of it’s propagation. In reality this means
we removed an electron at time t′ and added it at t. This means that the sum for
t′ < t must be over occupied states, as it is only those state holes may be added.

occ

∑
n

φn(x)φ∗n(x′)eiεn(t′−t). (2.56)

These then give the non-interacting Green’s function of this system to be17

G0
(
x, x′, t′ − t

)
=

{
i ∑occ

n φn(x)φ∗n(x′)eiεn(t′−t) t′ ≤ t
−i ∑unocc

n φn (x)φ∗n(x′)eiεn(t′−t) t′ > t
(2.57)

An illustration of an added electron propagating through the system is shown in
Figure 2.9.
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Figure 2.9: Illustration of an added electron propagating through the two
non-interacting electron model atom. At t = 0 an electron is added to the
system and it localizes at x = 0. Over time, the probability density of the
added electron being found at x′ is shown to spread out from the point
the electron is added, as it propagates through the system.

If we now consider the case where x = x′ and (t′ − t) = 0−, this can be thought of
the probability of removing and re-adding an electron at point x. It is intuitive that

17The i and−i have been added in order to be compatible with the physics propagator convention.
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Chapter 2 Theory of interacting electrons

this is counting the number of electrons at point x, and hence is the charge density
at point x. We can show this is the case by substituting x = x′ and (t′ − t) = 0− to
equation 2.57, to yield

−iG0
(
x, x, 0−

)
=

occ

∑
n

φn(x)φ∗n(x) (2.58)

= n(x). (2.59)

Let us now consider the interacting Green’s function G. We begin with the operators
that act on the wavefunction of our system to to add or remove electrons at a par-
ticular space-time point. These are called creation ψ̂† (x, t) and annihilation ψ̂ (x, t)
field operators18:

ψ̂† (x, t) = ∑
k

φ∗k (x) â†H
k (t) (2.60)

ψ̂ (x, t) = ∑
k

φk (x) âH
k (t) (2.61)

The Green’s function is then simply the expectation value of adding an electron at
(x, t) and removing it at (x′, t′) when you system is in the ground-state Ψ. In terms
of these operators one would expect it to be

G
(
x, x′, t′ − t

)
= −i〈Ψ|ψ̂

(
x′, t′

)
ψ̂† (x, t) |Ψ〉. (2.62)

But this will not make causal sense if t′ < t. The correct definition requires the same
account for time ordering as discussed earlier, when t′ < t we must remember to
perform the removal of an electron first, then the addition. The correct form of the
Green’s function is therefore

G
(
x, x′, t′ − t

)
= iθ

(
t′ − t

)
〈Ψ|ψ̂

(
x′, t′

)
ψ̂† (x, t) |Ψ〉 (2.63)

− iθ
(
t− t′

)
〈Ψ|ψ̂† (x, t) ψ̂

(
x′, t′

)
|Ψ〉, (2.64)

where θ is the Heaviside step function. This can be written in a more condensed
form using the time-ordering operator T, that is defined such that the addition and
removal is done in such a way to not violate causality

G
(
x, x′, t′ − t

)
= −i〈Ψ|T

[
ψ̂
(
x′, t′

)
ψ̂† (x, t)

]
|Ψ〉. (2.65)

This is then the definition for the Green’s function of the interacting system of
electrons with ground-state wavefunction Ψ. If we choose the wavefunction to be
a Slater-determinant of the system’s non-interacting single-particle orbitals Φ we
yield the non-interacting Green’s function for the system

G0
(
x, x′, t′ − t

)
= −i〈Φ|T

[
ψ̂
(
x′, t′

)
ψ̂† (x, t)

]
|Φ〉. (2.66)

By explicitly applying the operators equation 2.57 is yielded.

It is common to Fourier transform the Green’s function of a system into the momen-
tum k and energy ω19 domain G(k, ω). From this quantity the spectral function is
defined as

A(k, ω) = − 1
π

Im [G(k, ω)] . (2.67)

18where â†
i and âi are the creation and annihilation operators. Σi is defined as the sum of all orbital

numbers before the operation
19As E = h̄ω and in atomic units h̄ = 1
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Chapter 2 Theory of interacting electrons

This describes the probability of an electron in our system with energy ω to have
a momentum k. This can be measured experimentally; if we consider illuminating
a system with light of frequency ω, the spectral function is the probability that an
electron will be emitted with momentum k20, as illustrated in figure 2.10.

Figure 2.10: Illustration of the spectral function. A(k, ω) is the probability
that, if light of frequency ω illuminated a system, an electron of momen-
tum k is ejected from the system.

If we want to see the probability that any electron has an energy ω, we integrate over
all possible momentum, and obtain the density of states

D(ω) =
∫
∀

A(k, ω)dk. (2.68)

This describes the probability that if we illuminate the system with light of fre-
quency ω, an electron of any momentum is ejected from the system.

2.4.2 The self-energy

As in practice we do not know the many-body wavefunction Ψ, we next look at
how to compute the interacting Green’s function from the non-interacting Green’s
function. The non-interacting Green’s function G0 can be written in terms of the
inverse of the single-particle Hamiltonian H0:21(

H0 − i
∂

∂t

)
G0 = −I(

Ks + Vext − i
∂

∂t

)
G0 = −I

(2.69)

We now define some new Hamiltonian H, that contains a potential Σ. This is defined
in such a way that its inverse is the correct interacting Green’s function:(

H − i
∂

∂t

)
G = −I(

Ks + Vext + Σ− i
∂

∂t

)
G = −I.

(2.70)

20This process is called photoemission and describes the case when ω > 0. The case of ω < 0
corresponds to inverse photoemission: light of frequency ω being emitted from the system due to an
incident beam of electrons of momentum k.

21where Ks is the single-particle kinetic energy and I is the identity operator, here we are using
fairly compact notation for simplicity.
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Rearranging equations 2.69 and 2.70 we obtain the Dyson equation. In order to write
it down in a compact from we introduce the following notation:

Q
(
x, x′, t′ − t

)
→ Q (12)

R
(
x, x′, t′ − t

)
=
∫
∀

Q
(
x, x′′, t′′ − t

)
P
(
x′′, x′, t′ − t′′

)
dx′′dt′′ →

R (12) =
∫

Q (13) P (32) d3

In this more compact notation the Dyson equation is given by

G(12) = G0(12) +
∫

G0(13)Σ(34)G(42)d34 (2.71)

The potential Σ is termed the self-energy of the system. It is the potential felt by
an added electron or hole as it propagates through the system, where the system
itself has changed in response to the presence of the added electron or hole. As well
as being non-local in space, the exact self-energy is energy-dependent and hence
non-Hermitian. It is this property that allows the model of our system to go beyond
the single-particle picture. If a Hermitian (and so energy-independent) self-energy
was used in equation 2.71, the resulting G would be able to be written in terms of
single-particle orbitals. If the self-energy is energy-dependent (as the exact is) the
resulting G cannot be written in terms of single-particle orbitals, hence accounting
for the correlation of the electrons.

Equation 2.71 can be intuitively understood using a Feynman diagram:

...

As shown, by substituting G recursively the equation becomes an infinite sum of
scattering events. This describes the following: The probability amplitude of an
added electron propagating from point 1 to 2 is the probability amplitude it propa-
gates from 1 to 2 without interacting, plus the probability amplitude it propagates
from point 1 to 2 where between points 3 to 4 it is scattered by the electrons in the
system once, plus the probability amplitude it is scattered twice, and so on.

One example of an energy-independent self-energy is the Hartree-Fock case, whose
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self energy is, in the time domain22:

Σ(12) = VH(1)δ(12) + Σx(12) (2.72)

Σ(12) =
∫

v(13)G(33−)δ(12)d3 + iG(12)v(12) (2.73)

This can also be written as the following Feynman diagram 23:

The physical interpretation of this is that the potential the added electron feels is
the Hartree potential and exchange potential, but it does not cause the electrons to
become excited out of their single-particle ground states. In the next section we will
show how the exchange potential can be ‘screened’, in order to take account of the
correlation of the electrons.

2.4.3 The screened Coulomb interaction

A fundamental quantity in the theory of screening is the polarizability of the system.
This describes how easily the electrons become excited due to an external perturba-
tion. When this excitation happens, an electron moves to a higher energy state, and
leaves a hole behind, and this electron and hole then move through the system, and
eventually recombine. Therefore, the polarizability of the system is defined by the
probability amplitude of an added electron-hole pair from point 1 to point 2. There-
fore, the larger the polarizability, the more easily electron-hold pairs can be created
and move through the system. Hence this describes how readily the electrons be-
come excited due to some external perturbation.

One of the simplest models of the polarizability is that the electron-hole pair do not
interact. This approximation is called the ‘Random Phase Approximation’ (RPA)
[40, 41, 42]. This is simply given by the probability amplitude of an electron prop-
agating from point 1 to point 2, multiplied by the probability amplitude of an hole
propagating from point 1 to point 2:

P(12) = −iG(12)G(21). (2.74)

This can be illustrated using a Feynman diagram24:

22substituting the form of G (the form is actually of G0 as this is within the single-particle picture)
and v(12) = U(x, x′)δ(t′ − t) gives the formula for the Hartree-potential and exchange operator as
shown in equations 2.47 and 2.50 respectively. Using our more condensed notation δ(12) = δ(x2 −
x1)δ(t2 − t1).

23Note the diagram for the density, as n(3) = G(33−)
24It is conventional to draw the propagation of a hole as going in the opposite direction to an

electron
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This illustrates an electron-hole pair propagating from point to point without inter-
acting.

When we add an electron to a system, the electrons respond by repelling away from
the added charge. The extent to which they can respond is directly determined by
the polarizability. This gives rise to a screened Coulomb interaction, as felt by the
added electron. The screened interaction W can be computed from the polarizability
P via the Dyson like equation

W(12) = v(12) +
∫

v(13)P(34)W(42)d34, (2.75)

as illustrated by the corresponding Feynman diagram:

This describes that the interaction between points 1 and 2 is the bare Coulomb in-
teraction v, plus a modification due to one electron-hole pair being created, plus a
further modification due to two electron-hole pairs being created and so on.

This interaction is then used to screen the exchange interaction of the Hartree-Fock
method, thus moving beyond the single-particle picture, approximately accounting
for the correlation between the electrons:

Σ(12) = VH(1)δ(12) + Σxc(12) (2.76)

Σ(12) =
∫

v(13)G(33−)δ(12)d3 + iG(12)W(12) (2.77)

This approximation to the self-energy is therefore called the ‘GW’ approximation,
and is represented by the Feynman diagram:
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It is worth noting that the Hartree-Fock self-energy is recovered if the electrons are
forced into their single-particle ground states by choosing P = 0.

The effect of moving beyond the single-particle picture on the spectral function is
illustrated in figure 2.11.
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A

Plasmon

GWHF

GW HF

Figure 2.11: Illustration of the correlation described by the GW approx-
imation. In the Hartree-Fock (HF) case (green), as an added electron
propagates through the system, no electron-hole pairs are created (as
P = 0) and hence the particles remain in their single-particle ground
states. Therefore, the spectral function is simply a spike at the single par-
ticle energies, one such energy is shown here (εHF). In contrast, in the
GW case (blue), the electrons in the system screen the propagation of an
added electron, as P is non-zero (approximated using the RPA). The ef-
fect this has on the spectral peak is to move the position of the peak, and
for the peak to be broadened, which illustrates the non-single-particle na-
ture of accounting for correlation (these broadened peaks are termed the
quasi-particle peaks). In addition there is a satellite plasmon peak, which
encapsulates the collective electron oscillations.
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2.4.4 The GW equations

The Dyson equations for the Green’s function and the screened interaction, the RPA
model of polarizability, and the GW approximation to the self-energy form the set
of self-consistent GW equations:

P(12) = −iG(12)G(21) (2.78)

W(12) = v(12) +
∫

v(13)P(34)W(42)d34 (2.79)

Σ(12) = VH(1)δ(12) + iG(12)W(12) (2.80)

G(12) = G0(12) +
∫

G0(13)Σ(34)G(42)d34 (2.81)

These equations are solved self-consistently:

Figure 2.12: Flow-chart describing the GW method. The method be-
gins with a set of non-interacting orbitals, from this the description of
the propagation of an added electron or hole G0 is constructed. From
this we can then compute the propagation of an added electron-hole pair
P. This can then be used to compute how the bare Coulomb interac-
tion is screened, yielding W. This is then used to construct the energy-
dependent potential Σ, that a added electron would feel as it propagates
through the system. This potential is then used to compute the interact-
ing Green’s function G. This process is repeated until self-consistency
is reached (blue arrow). The ground-state density and quasi-particle or-
bitals are then computed from G and Σ respectively. An alternative ap-
proach is to only compute G and Σ self-consistently (red arrow, termed
the GW0 or semi-self consistent method), or to simply perform only
one-iteration, from some reasonably starting orbitals (black arrows only,
termed the G0W0 or one-shot method).

When describing the single-particle excitation properties of a system, the GW method
is the most common method of choice, but it is not exact as it neglects terms to the
polarizability and self-energy. The computation of the exact quantities requires ‘ver-
tex corrections’.
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2.4.5 Hedin’s equations and vertex corrections

The GW equations are an approximate case of Hedin’s equations [13], the solution
of which yields the exact ground-state and single-particle excitation properties:

P(12) = −i
∫

G(13)G(41)Γ(342)d34 (2.82)

W(12) = v(12) +
∫

v(13)P(34)W(42)d34 (2.83)

Σ(12) = VH(1)δ(12) + i
∫

G(13)W(14)Γ(342)d34 (2.84)

G(12) = G0(12) +
∫

G0(13)Σ(34)G(42)d34 (2.85)

Γ(123) = δ(12)δ(13) +
∫

δΣ(24)
δG(16)

G(45)G(76)Γ(573)d4567 (2.86)

Where the equations for the polarizability and self-energy now contain the vertex
function Γ. Solving these equations in practice is totally intractable, which is why
approximations must be made. The GW approximation is recovered from these
equations using

δΣ
δG

= 0 (2.87)

It is however useful to consider the diagrams beyond the GW approximation, as in
some case these help illustrate what physical phenomena are neglected. For exam-
ple some of the terms of the exact polarizability are given by the diagrams:

This adds in some of the electron-hole interaction neglected by the RPA, as the pair
now interact by the static screened Coulomb interaction. An expansion of this type
can be obtained using

δΣ
δG

= iW (2.88)

and is called the Bethe-Salpeter equation [43], which is a common type of beyond-
GW many-body perturbation theory, often used to compute optical absorption prop-
erties. Some of the diagrams of the exact self energy are:

These terms beyond the Hartree and screened exchange describe the self-interaction
correction to the GW method [44]. Neglecting such terms gives rise to the GW ap-
proximation exhibiting the self-screening error [22]. In chapter 5 we investigate this
error in detail along with proposing a correction.
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2.5 Density functional theory

2.5.1 The Hohenberg-Kohn theorem

We now introduce density functional theory (DFT), which is a method to compute
the ground-state properties of a system of interacting electrons. This approach is
in principle exact, although approximations must be made if it is to be applied to
large-scale systems. The key property of this method is that it does not focus on the
wavefunction or Green’s function as in the previous methods, but instead on the
ground-state density

n(x) = Neρ(x), (2.89)

whose integral is the total charge between points A and B in system

Q (A, B) =
∫ B

A
n (x) dx. (2.90)

Where ρ(x) is the electron probability density:

ρ(x) =
∫
∀
· · ·

∫
∀
|Ψ(x, x2, . . . , xN)|2dx2 . . . dxn. (2.91)

The Hohenberg-Kohn theorem [29] states that for a given Hamiltonian the external
potential is, up to an additive constant, a unique functional of the electron density.
Hohenberg and Kohn proved that the total energy of the system can be written as a
functional of the ground-state density25:

E [n] (2.92)

The value of E obtained from equation 2.92 for a guessed density n′ will always be
greater that the true ground state energy E0, therefore n0 and E0 can be obtained by
minimizing the functional

δE [n] = 0. (2.93)

The total Hamiltonian can be split into three parts

E [n] = K [n] + vexternal [n] + U [n] (2.94)

The form of the external potential function is known to be:

vext [n] =
∫

Vexternal (x) n (x) dx (2.95)

So E can be written in terms of the universal functional F = K + U and the known
functional:

E [n] = F [n] +
∫

Vexternal (x) n (x) dx (2.96)

In principle, inserting the exact ground-state density into this functional will yield
the exact ground-state energy. The most common approach to determining this den-
sity is the Kohn-Sham approach.

25from here on in we use density to mean charge density, not probability density unless otherwise
stated.
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2.5.2 The Kohn-Sham ansatz

The Kohn-Sham approach to DFT [45] considers a fictitious system of non-interacting
electrons whose ground-state density is exactly the same as the many-body system.
This fictitious system is defined by a new external potential, termed the Kohn-Sham
potential VKS. This is illustrated in figure 2.13.

(a) (b)

Figure 2.13: Illustration of the Kohn-Sham concept. We consider a system
of two electrons in a model 1-dimensional quantum harmonic oscillator.
In panel (a) we show the external potential of the system Vexternal. We
then solve the many-body Schrödinger equation for this system to obtain
the interacting ground-state density. This density shows each electron is
pushed away from the center of the system due to the Coulomb repul-
sion. In panel (b) we show the corresponding Kohn-Sham system. The
exact Kohn-Sham potential VKS is the potential that represents the fic-
titious system of non-interacting electrons, that yields exactly the same
density as the real interacting system. In this case the exact Kohn-Sham
potential contains a central bump, that accounts for the effect of the elec-
tron repulsion present in the real system.

This Kohn-Sham potential is often split into three distinct parts:

VKS (x) = Vext (x) + VH (x) + Vxc (x) (2.97)

Vext (x) is the external potential of the real system, and VH (x) is the previously de-
fined Hartree potential. Vxc (x) is the Kohn-Sham exchange-correlation potential,
which is the potential that allows the fictitious Kohn-Sham system to reproduce
the same density as the real system, despite the fact that exchange and correlation
are neglected in this single-particle picture. This potential, along with the Hartree
potential, are functionals of the density, and therefore so is the Kohn-Sham Hamil-
tonian:

HKS[n] = Ks + VKS[n]. (2.98)

If one has the exact exchange-correlation functional, the Kohn-Sham equations can
be solved self-consistently. Firstly, a guess is made for the single-particle orbitals
{φi} and thus the charge density n. This allows us to compute VKS[n] and hence
HKS[n] using equations 2.97 and 2.98. Then we solve for the Hamiltonian’s eigen-
states to give a new set of orbitals. This is then repeated until convergence is reached.
In practice though, the exact exchange correlation functional is not known, and must
be approximated. The power of DFT lies in the fact that the exchange-correlation
potential is small compared to the whole Kohn-Sham potential, therefore relatively
crude approximations can yield surprisingly accurate results.
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2.5.3 The local density approximation

If approximations can be made to the exchange-correlation potential, the Kohn-
Sham potential can be approximated, and DFT can be applied to physical systems.
One such approximation is the local density approximation (LDA), where the func-
tional only depends locally on the density, that is, the exchange-correlation potential
at point x only depends on the density at point x. The LDA exchange-correlation
energy is given by

ELDA
xc [n] =

∫
εxc (n) n (x) dx, (2.99)

where εxc (n) is the exchange-correlation energy per electron of the homogeneous
electron gas. This functional can be used to construct the LDA exchange-correlation
potential:

VLDA
xc [n] (x) =

δELDA
xc
δn

(2.100)

Figure 2.14 illustrates the LDA applied to our model system of figure 2.13. This ficti-
tious system of non-interacting electrons only approximately reproduces the density
of the interaction system, although surprisingly accurate given its simplicity.

(a)

(b)

Figure 2.14: Here we show the performance of the LDA for the model
system presented in figure 2.13. As shown in panel (a) the LDA yields
a reasonably accurate density for this system. Panel (b) shows the corre-
sponding Kohn-Sham potentials.
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2.5.4 Time-dependent density functional theory

The Runge-Gross theorem [35] extends density functional theory to the case where
the system is now driven out of its ground-state with a perturbation Vptrb (x). It
proves that there is a one-to-one mapping between the time-dependent external po-
tential and the time-dependent electron density up to an additive constant. As in
the ground-state case we can invoke the Kohn-Sham Ansatz, and consider a time-
dependent fictitious system of non-interacting electrons, that has exactly the same
time-dependent density as the real system.

We can then define this time-dependent fictitious system by the time-dependent
Kohn-Sham potential:

VKS (x, t) = Vext (x) + Vptrb (x, t) + VH (x, t) + Vxc (x, t) , (2.101)

where now the exchange-correlation potential is a functional of the density at the
current time, and all previous times. It is for this reason the exact time-dependent
exchange-correlation potential is said to contain ‘memory effects’. This potential can
then be used to determine the time-dependent density when inserted into the single-
particle time-dependent Schrödinger equation. As in the ground-state case, this is in
principle exact, but approximations must be made to the exchange-correlation term.
In the time-dependent case, crude approximations such as the LDA perform very
poorly [12].
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Chapter 3

The interacting Dynamic Electrons
Approach (iDEA)

3.1 Overview

The purpose of the iDEA (interacting Dynamic Electrons Approach) code is to test
existing, and develop novel methods of solving the many interacting electron prob-
lem [46].

It is concerned with simple finite model systems for which the many-electron
Shrödinger equation can be solved exactly, both for ground-state and time-dependent
cases. We can therefore compute the exact many-electron wavefunction and from
this, many properties of the system, such as charge density, ionization potential,
electron affinity, quasiparticle gaps, total energies and Kohn-Sham potentials. In
order for this to be computationally tractable we work with small 1-dimensional
model systems containing a small number of electrons (1,2 or 3), whose proper-
ties can be determined exactly by performing an exact numerical solution to the
Schrödinger equation on a real-space real-time grid. We model our systems to
reproduce as closely as possible the physical effects that occur in real molecules
and molecular junctions; such as atoms, unbonded and bonded atom pairs, and
strongly bound electrons. We often choose the electrons to have like-spin1 (unless
otherwise stated) in order to more closely approach the exchange and correlation
effects in large-scale systems for a given computational effort. As the systems are 1-
dimensional, we use a softening parameter of 1.0 in the Coulomb interaction unless
otherwise stated. This ensures we as closely possible reproduce the interaction of
two charged disks in a nano-wire [46].

As well as the exact solution, iDEA also contains many implementations of com-
monly used approximate approaches. These include Kohn-Sham density functional
theory (KS-DFT) approaches such as purely non-interacting electrons, the Local
Density Approximation (LDA) [47] and the time-dependent adiabatic LDA. For this
work, additional modules of iDEA were developed; in particular, many forms of
many-body perturbation theory (MBPT) [28], such as the Hartree and Hartree-Fock
methods, and many flavors of the GW approximation including; G0W0, GW0, fully-
self-consistent GW, as well as static forms such as COHSEX (these flavors are de-
scribed in detail in chapter 4). This allows us to compute approximate densities and

1Achieved by enforcing the spatial part of the wavefuntion to be exchange-antisymmetric.

43



Chapter 3 The interacting Dynamic Electrons Approach (iDEA)

quasi-particle energies, as well as Green’s functions and self-energies.

The goal of the iDEA approach is to compare various approximate methods against
the exact case for these characteristic model systems and determine where, and for
what reason, common approaches fail. This then allows us to investigate such fail-
ings in detail as all of the key quantities are explicitly available. From this we can
formulate corrections and novel methods that yield more accurate results. The hope
is that these improved methods can then be used in large-scale codes and thus im-
prove the models, predictions and understanding of real molecules and molecular
junctions.
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3.2 Implementation

3.2.1 Exact solution

We first introduce the exact many-body module. This is used to compute the exact
wavefunction, total energy and charge density of a ground-state system, as well
as evolving charge and current densities for time-dependent systems. The process
begins by finding the ground-state of a system by means of the Crank-Nicholson
propagation [48] through imaginary-time.

The Crank-Nicholson method is used to propagate a given state of a system in time
by representing the time-dependent Schrödinger equation as a set of linear equa-
tions. If we begin with the time-dependent form of an arbitrary wavefunction writ-
ten in terms of the eigenfunctions of the many-body Hamiltonian φn:

Ψ (x, t) = ∑
n

e−iEntcnφn, (3.1)

and then we move to imaginary-time via the substitution τ = it

Ψ (x, τ) = ∑
n

e−Enτcnφn, (3.2)

we can see that as we evolve over imaginary-time, the terms of the wavefunction
exponentially decay with the energy of the associated eigenfunction. So as τ → ∞
the contributions from higher energy states will decay fastest. As long we keep
renormalising the wavefunction at each time-step, any initial arbitrary antisymmet-
ric wavefunction will tend to the system’s ground state. Once this ground-state has
been determined, a perturbing potential is applied to the system to cause the charge
density to evolve with time. The time evolution is also computed using the Crank-
Nicholson method, but now in the real time-domain. From this we can compute any
required time-dependent property of the system.

3.2.2 Reverse-engineering

The purpose of the reverse engineering module is to determine the exact ground-
state Kohn-Sham potential that corresponds to given charge density, as computed
from the exact many-body module2. To obtain the ground state Kohn-Sham po-
tential we begin with a guess (usually the external potential), and from this solve
the single-particle Shrödinger to obtain a set of orbitals and a ground-state charge
density nKS. From this we update our guess of the Kohn-Sham potential using the
difference in our Kohn-Sham density and the target density n(x)

VKS → VKS + µ
(
nKS (x)p − n (x)p) . (3.3)

Where µ is a stability parameter usually chosen to be 0.01, and the value of p is
chosen to be 0.05 to focus the algorithm on the important low-density regions.

2This algorithm is also capable of finding the corresponding Kohn-Sham potential of any given
density, such as that from MBPT approaches.
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3.2.3 Non-interacting electrons

The non-interacting module is used to compute the charge density via the simplest
possible approximation - the total neglect of the Coulomb interaction. This can be
treated as an approximation to the KS-DFT Hartree exchange-correlation potential

VHxc (x) = 0, (3.4)

this ensures that the electrons are truly non-interacting:

VKS (x) = Vexternal (x) + VHxc (x) = Vexternal (x) . (3.5)

While this approximation is very trivial in the framework of DFT, it is nevertheless a
good reference approximation to ensure interaction is having a significant effect on
the density for a given system. Although, this approximation does contain no self-
interaction and so, in some special cases may perform better than Hartree theory.
The charge density is then computed from the resulting N occupied orbitals

n (x) =
N

∑
n=1
|φn (x) |2. (3.6)

Where φn are calculated by diagonalising the non-interacting Hamiltonian of the
system. To calculate the time-dependent current density, each of the orbitals is
evolved separately in time using the time-dependent single-particle Schrödinger
equation.

3.2.4 The local-density approximation

Next we present the LDA module. This is an implementation of the self-consistent
KS equations using the LDA exchange-correlation functional. There are several vari-
ations of the functional available; those fitted from a series of one, two and three
electron 1-dimensional density slabs3, or via the usual Monte-Carlo calculations
of the 3-dimensional homogeneous electron gas. We compute the LDA exchange-
correlation potential from these exchange correlation functionals using

VLDA
xc [n] (x) =

δELDA
xc
δn

. (3.7)

This gives the LDA KS potential to be

VKS (x) = Vexternal (x) + VH (x) + VLDA
xc (x) . (3.8)

We use the following algorithm to solve the self-consistent Kohn-Sham equations:

3Described in detail in reference [47]
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Algorithm 1 Self-consistent density functional theory with the Local Density Ap-
proximation

1: Start with an initial guess of VKS (usually Vexternal)
2: Solve the KS equations for the ground-state density n
3: Compute VH[n](x) and Vxc[n](x) for this density
4: Compute the full VKS using equation 3.8
5: Use linear stability mixing to update the KS potential: VKS = αVnew

KS + (1 −
α)Vold

KS . For optimal stability we choose α = 0.2.
6: Repeat from step 2 until self-consistency with respect to the density is reached

3.2.5 The Hartree-Fock approximation

The next module we present is the Hartree-Fock (HF) module. This allows us to
investigate the performance of one of the most widely used and simplest levels of
MBPT, along with being an invaluable tool to quantitatively deduce the level of
correlation in a given system. We solve the HF equations using the following self-
consistent method:

Algorithm 2 Self-consistent Hartree-Fock

1: Start with an initial guess of the orbitals (usually the purely non-interacting or-
bitals of the external potential)

2: Construct the Hartree and exchange potentials
3: Use linear stability mixing to update the Hamiltonian: HHF = αHnew

HF + (1 −
α)Hold

HF . For optimal stability we choose α = 0.9.
4: Diagonalise the HF Hamiltonian for an updated set of orbitals
5: Repeat from step 2 until self-consistency is reached

Along with the HF charge density total energy and quasiparticle energies, we can
also explicitly observe the non-local exchange operator on our spatial grid.

3.2.6 The GW approximation

For this work we also created the Many-Body Perturbation theory module. This
has the ability to solve the GW equations with various levels of self-consistency,
starting orbitals and various approximations to the self-energy and polarizability.
The module is used to compute the ground-state charge density of a given system,
along with the quasi-particle energies, Green’s functions, self-energies etc.

We implement the space-time method [49] to solve the self-consistent GW equations.
The first step is to construct the non-interacting Green’s function G0 from a given set
of single-particle orbital and energies4. In the space-time method this is constructed
in the imaginary time-domain (iτ = t′ − t) as this allows the Green’s function to be
stored on an finite imaginary-time grid, as G0 will decay instead of oscillate.

G0
(
x, x′, iτ

)
=

{
i ∑occ

n φn(x)φ∗n(x′)e−εnτ τ ≤ 0
−i ∑unocc

n φn (x)φ∗n(x′)e−εnτ τ > 0 (3.9)

4this determines the starting point of the calculation; we usually pick LDA or HF orbitals. The
energies are defined on a scale that places the chemical potential at zero.
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The imaginary part5 of the non-interacting Green’s function for a two-electron quan-
tum harmonic oscillator (QHO) (from purely non-interacting orbitals) at imaginary
time iτ = 0 is shown in figure 3.1.

Figure 3.1: Imaginary part of the non-interacting Green’s function at iτ =
0 for the two-electron QHO (ω = 0.25) constructed from purely non-
interacting orbitals.

The initial guess for the interacting Green’s function G is then taken to be this non-
interacting Green’s function.

The next stage is to construct the polarizablity P. In the imaginary time-domain this
is constructed using the expression

P
(
x, x′, iτ

)
= −iG

(
x, x′, iτ

)
G
(
x′, x,−iτ

)
(3.10)

P
(
x, x′, 0

)
= −iG

(
x, x′, 0

)
GALT (x′, x, 0

)
. (3.11)

Where GALT is an alternative Green’s function that treats τ = 0 as an electron addi-
tion, rather than a hole addition, as is in the standard definition. Figure 3.2 shows the
probability density of finding an electron-hole pair added to our illustrative QHO
system at x = 0, an infinitesimal time after it was added.

5the real part is zero by definition, as in iDEA all the single-particle orbitals are chosen to be
entirely real. This is possible as it is in one-dimension.
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'
Figure 3.2: Probability density of finding an electron-hole pair added to
the two-electron QHO at x = 0, an infinitesimal time after it was added.
Computed from the imaginary part of P(x = 0, x′, iτ = 0). Note the
small amount of propagation through the system, which is due to the
added pair having to obey the Pauli exclusion principle at the moment of
addition.

Next, we construct the screened Coulomb interaction. From the GW equations we
can see that W is written as a convolution in the imaginary time-domain, so if we ap-
propriately Fourier transform the quantities into the imaginary frequency-domain
we can write out the Dyson equation for W as a matrix equation 6

W (iω) = v + vP (iω)W (iω) , (3.12)

which can be rearranged for the screened coulomb interaction7:

W (iω) = (I − vP (iω))−1 v. (3.13)

This is then Fourier transformed back into the imaginary time-domain. We show
the screened Coulomb interaction W in comparison to the bare Coulomb interaction
v for the QHO system in figure 3.3. We show the interaction felt by a test charge at
points x = 0 (panel (a)) and x = 3.5 (panel (b)). Note that the interaction is reduced
in strength at short range, and increased at long range. This is due to the electrons
in the system moving out of the vicinity of the test charge.

6Where W(x, x′, iω) is stored on a 2D spatial grid and 1D imaginary energy grid.
7Where I is the identity matrix.
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I
I

Figure 3.3: The screened Coulomb interaction W as felt by a test charge
at points x = 0 (a) and x = 3.5 (b) in comparison to the bare Coulomb
interaction v for the QHO.

Next, we construct the self-energy Σ in the imaginary time-domain. The exchange
correlation term is simply given by

Σxc
(
x, x′, iτ

)
= iG

(
x, x′, iτ

)
W
(
x, x′, iτ

)
. (3.14)

This is then Fourier transformed back into imaginary frequency-domain. The ex-
change correlation self-energy for the QHO system is shown in figure 3.4.
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xc

Figure 3.4: The exchange correlation part of the GW self-energy for the
QHO system at iω = 0.

The Hartree term is then included by adding the Hartree potential along the diago-
nal of Σ. If we begin our calculation from a set of starting orbitals that are not purely
non-interacting, in order to ensure we are not double-counting diagrams, we must
also subtract the associated VHxc.

The final stage of an iteration is to update G using the current self-energy Σ using
the Dyson equation for the Green’s function in the imaginary frequency-domain:

G (iω) = G0 (iω) + G0 (iω)Σ (iω) G (iω) . (3.15)

Which can be rearranged for the interacting Green’s function:

G (iω) = (I − G0 (iω)Σ (iω))−1 G0 (iω) (3.16)

As the chemical potentials of the input and output Green’s function are different,
we must shift our energy grid in order to ensure the number of electrons remains
conserved. To do this the self-energy must be appropriately shifted in the imaginary
frequency-domain, we term this the ‘Hedin Shift’. This is implemented by adding
the expectation value of the real part of the self-energy at the chemical potential to
Σ in the imaginary frequency-domain:

Σ (iω)→ Σ (iω)− I
〈φL|Σ (iω = 0) |φL〉+ 〈φH|Σ (iω = 0) |φH〉

2
. (3.17)

Where φH and φL are the HOMO and LUMO states respectively. We monitor the
particle number at each iteration to ensure the effectiveness of this shift.

Once G is updated we can extract the charge density n(x) = −iG(x, x, iτ = 0). De-
pending on the level of self-consistency required, we repeat the cycle until conver-
gence is reached at the level of the density. We then output the density, quasiparticle
energies as well as the quantities G,P,W and Σ.
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3.3 A physical example: The covalent bond

We will now illustrate the exact many-body module of iDEA for a relevant physical
example: a model covalent bond. We consider two 1-dimensional model hydrogen
atoms separated by a distance d. This external potential is shown in figure 3.5

distance

Figure 3.5: The external potential representing two 1-dimensional model
hydrogen atoms separated by a distance d.

We employ the exact many-body module of iDEA to determine the total electron
energy, we then add on the proton energy to yield the total energy for a given dis-
tance d. We then repeat this for a range of distances from 0 a.u to 8 a.u. We find the
characteristic unbonded (when using like-spin), and bonding energy curve (when
using opposite-spin) . These are shown in figure 3.6.

Figure 3.6: The total energy vs distance curves for our system containing
two model hydrogen atoms. The blue curve shows the result when we
treat the electrons as like-spin and as is expected no bond forms. The red
curve shows the corresponding result for when the electrons are treated
as having opposite-spin. We see the usual bonding curve characteristic
of a covalent bond.

This is only one example of a large number of characteristic systems we model in
iDEA, as we are free to choose any external potential to generate a model system
that exhibits the required physical phenomena.
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Chapter 4

Densities from existing and novel
flavors of the GW approximation

Even though many-body perturbation theory (MBPT) is a popular method for cal-
culating the properties of many-electron systems, little is known regarding the ac-
curacy of the ground-state electron density obtained. In this chapter we assess the
accuracy of the electron density and quasi-particle (QP) energies obtained via var-
ious flavors of the GW approximation. We vary the level of approximation used
in both the self-energy and the polarizability. We also introduce a novel approxi-
mation to the polarizability, termed ‘inertial screening’. Our approximation is most
appropriate for our model systems with appreciable correlation; we find it yields
more accurate electron densities compared against the standard dynamic and static
screening methods within GW for all systems studied. Furthermore, the inertial
screening approximation also yields accurate QP energies. Within the dynamic ap-
proximation to the polarizability, we find that one-shot methods are most appropri-
ate, particularly when Hartree-Fock orbitals are employed as a starting point. We
find that the densities and ionization potentials are adversely effected by the self-
screening error, caused by neglect of vertex terms in the self-energy. We also show
that the Kohn-Sham (KS) potentials, which correspond to our densities obtained via
MBPT, capture aspects of the exact KS potential provided the level of approximation
within GW is appropriate.

53



Chapter 4 Densities from existing and novel flavors of the GW approximation

4.1 Introduction

In chapter 2 we showed how MBPT describes the response of a system to the addi-
tion or removal of electrons (or holes). For large scale systems it is most often used
to compute exited-state properties of materials, such as optical absorption [50, 51],
photoemission and inverse-photoemission spectra [52] and single-particle addition
and removal energies [21]. While the exact one-body excitation properties of the
system are in principle obtained by iteratively solving Hedin’s equations [13, 14], in
practice approximations must be made. One of the most common approximations
used in practical calculations is the GW approximation. This approximation can
be implemented in several ways (or flavours) by either controlling the level of self-
consistency, i.e., solving Hedin’s equation and updating Σ only once (termed one-
shot or G0W0), or from one’s choice of approximation to the polarizability, P. The
most common flavour is a one-shot calculation with a single-particle starting point,
such as a Kohn-Sham (KS) density-functional calculation within the local density
approximation (LDA) [14].

The G0W0 approximation generally improves upon the band gap and all other single-
particle energies from a density-functional calculation [19, 20], due to a cancellation
of errors between the absent vertex corrections and the lack of self-consistency in the
calculation [22]. In contrast, fully self-consistent GW (referred to as GW) has been
found to overestimate the band gap [50], owing to the need for vertex corrections in
a self-consistent calculation [22].

The accuracy of the GW ground-state electron density is not well known, in contrast
to density functional theory (DFT) or the Hartree-Fock (HF) method. In principle,
an exact solution of Hedin’s equation yields an exact electron density. However, it
is not understood what effect neglecting the vertex corrections has on the density,
which flavor of GW gives the most accurate density, or, if necessary, what corrections
to Σ are needed to obtain an accurate density from MBPT.

In this chapter we investigate the performance of MBPT for a set of one-dimensional
model systems for which we can exactly solve the many-electron Schrödinger equa-
tion and therefore have access to the exact many-electron, fully-correlated wave-
function and thus the exact electron density. We choose our electrons for this in-
vestigation to be like-spin to more closely approach the exchange and correlation
effects present in large scale systems. We compare the performance of various fla-
vors of GW across several levels of approximation. We also ‘reverse engineer’ each
electron density, using our reverse-engineering algorithm, to find the corresponding
local effective KS potential. As we have access to the exact density, we can compute
the exact KS potential and compare it to the KS potential obtained from MBPT. From
our investigation, we gain a deeper insight into the strengths/failings of the GW ap-
proximation.
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4.2 Flavors of the GW approximation

As shown in Chapter 2, the Dyson equation for G describes all of the ground-state
properties as well as the one-body1 charged excitations:

G = G0 + G0ΣG, (4.1)

where G0 is the initial non-interacting Green’s function constructed from a set of
single-particle starting orbitals. The self-energy is given by Σ = VH + iGWΓ, where
VH is the Hartree potential and Γ = I + δΣ

δG GGΓ. The screened Coulomb interaction
is expressed as W = v + vPW, where P = −iGGΓ. Within the GW approximation,
δΣ
δG = 0 and thus the self-energy is given by Σ = VH + iGW. In this case the po-
larizability P = −iGG – this is known as the random phase approximation (RPA)
[40, 41, 42]. Together these approximations to Σ and P, and Eq. (4.1), are termed the
GW equations.

These two approximations introduce systematic error into the method. Firstly, the
RPA neglects the electron-hole interaction between the excited electron-hole pairs
in the polarizability. This usually causes the GW approximation to perform poorly
for optical properties [51]. In principle, this error can be removed by vertex correc-
tions, such as the Bethe-Salpeter equation [43, 53]. Secondly, the GW approxima-
tion to the self-energy neglects the self-interaction correction, and gives rise to the
self-screening error [25, 22], which is discussed in detail in Chapter 5. It is largely
unknown what effect the neglect of vertex corrections has on the density.

The one-shot solution of the GW equations means that the exchange-correlation (xc)
component of the self-energy can be written in terms of a non-interacting Green’s
function G0, as such

Σxc = iG0W0. (4.2)

The screened interaction W0 is computed from G0. This is the self-energy felt by
an electron or hole added to a system of non-interacting electrons, usually in some
effective potential. As a result, G0W0 depends on the starting orbitals that describe
the non-interacting system. In this work we use the single-particle orbitals from a
density-functional calculation employing the LDA2 (G0W0@LDA) and the orbitals
from a HF calculation (G0W0@HF). These one-shot methods are usually the pre-
ferred way of performing GW calculations due to their relatively low computational
cost. We also perform fully self-consistent GW calculations. In this case the xc self-
energy is given by

Σxc = iGW. (4.3)

As the GW equations are solved self-consistently, the fully interacting G and W are
updated at each iteration of the self-consistent procedure, hence this approximation
does not depend on the starting orbitals used to construct G0. Semi self-consistent
solutions of the GW equations are also used (GW0). In this case, G and Σ are updated
until self-consistency is reached, while W0 remains constructed from the starting
orbitals. Therefore

Σxc = iGW0. (4.4)

The flow chart in figure 2.12 illustrates the difference between these three levels
of self consistency. The sections of the flow chart indicated with black solid ar-

1Excitation due to the addition or removal of one electron or hole.
2We use the LDA as construced from 1-dimensional density slabs as described in detail in refer-

ence [47].
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rows show the path of G0W0 from a set of starting orbitals to a density and quasi-
particle energies. The blue dotted arrow shows where the fully self-consistent GW
method connects to the beginning of the cycle, which is repeated until convergence
is reached and then the density and quasi-particle energies are calculated. The red
dashed arrow illustrates the path of a semi self-consistent GW0 calculation, as the
screened interaction W is not updated.

The polarizability within the RPA can be implemented in several ways, depending
on how one treats the energy dependence. The most computationally expensive is
known as dynamic RPA,

Pdynamic = PRPA(x, x′, ω). (4.5)

This is the full RPA with all of its approximate dynamic correlation effects included.
This choice for P takes GW beyond a single particle-picture, as the self-energy be-
comes energy-dependent and non-hermitian, and the single-particle addition and
removal peaks become broadened. One can also choose a static RPA, which removes
the energy dependence from the dynamic RPA by taking the value at zero energy:

Pstatic = PRPA(x, x′, ω = 0). (4.6)

In this case the self-energy is energy independent, meaning that the electrons are
represented by a non-interacting Hamiltonian that is similar to that of HF but with
a Fock term which is statically screened. When determining the self-energy for this
form of P, the statically screened exchange (SEX) term must be accompanied by the
Coulomb-hole (COH) term3 in order to take account of the screening cloud adiabat-
ically built-up around the added electron [14]. Using this form of the self-energy is
called the COHSEX approximation.

In this work we also introduce the ‘inertial’ RPA, which is also a static approximation
to the screening, but instead of enforcing the static behavior in the energy domain,
we do so in the time domain, hence

Pinertial = PRPA(x, x′, t = 0). (4.7)

One may consider this approximation as fixing the screening from the moment the
electron or hole is added to the system, opposed to the total screening over all time,
as in the COHSEX case. Hence, we would expect that this approximation is more
suitable for systems with stronger correlation, as systems of this type have a narrow
screening distribution in the energy domain, and hence a broad distribution in the
time domain. We term this ‘inertial screening’ as it can be thought of as increas-
ing the effective mass of the collective electron oscillations in the COHSEX case,
making them respond much slower. This increase in inertia could act to cancel the
over-screening error in the COHSEX approximation while maintaining the benefi-
cial simplicity of a static approximation to P.

3ΣCOH = 1
2 δ(x, x′)Wc(x, x′, ω = 0).

56



Chapter 4 Densities from existing and novel flavors of the GW approximation

4.3 Performance for model systems

We model a set of our one-dimensional model systems using the exact many-body
method, DFT, the HF method, and various flavours of GW. Furthermore, we reverse-
engineer each of these densities to obtain their corresponding KS potential. This al-
lows us to see how well important aspects of exact KS-xc is captured by GW in order
to aid the development of more advanced approximations within DFT. In addition
to investigating the accuracy of the electron density from MBPT, we compare the
quasi-particle (QP) energies, specifically the ionization potential (IP), electron affin-
ity (EA) and fundamental gap (IP minus EA). These quantities are important, e.g., in
quantum chemistry and material science [21, 19]. Furthermore, we investigate any
correlation between the accuracy of the electron density and the QP energies for our
various approximations.

In this chapter we study two types of system which we term ‘exchange-dominated’
and ‘correlated’. We define an exchange-dominated system to be that which is accu-
rately described by HF. For our exchange-dominated systems, we use the external
potential of the quantum harmonic oscillator (QHO), VQHO

ext (x) = 1
2 ω2x2, which

strongly confines the electrons when ω = 0.25. We study three QHOs containing 1,
2 and 3 electrons in turn. Systems which are termed correlated are systems for which
the density and energies are not well represented by HF. For these systems we use an
‘atom-like’ potential which acts to weakly confine the electrons and hence include
significant correlation effects. The external potential for our correlated systems is
the atom-like potential VAtom

ext (x) = (a|x|+ 1)−1, where, a = 0.05 for our one- and
two-electron atoms and a = 0.02 for our three-electron atom.

4.3.1 Overview of the performance of the GW approximation

First we show the general performance of the GW approximation for various flavors
and levels of approximation. Figure 4.1 shows the accuracy of the electron density
across all our exchange-dominated and correlated systems (described above and
investigated in detail below). As shown, the density error4, particularly in the cor-
related atom-like systems, is highly dependent on the flavour of GW used. As can
be seen by the three sets of columns, inertial screening preforms much better than
dynamic and COHSEX for all of the system studied, which will be analyzed in de-
tail in Section 4.3.3. The first five columns show that when performing dynamic
GW calculations, the level of self-consistency chosen and the starting orbitals has a
huge effect on the density, and in general the G0W0@HF flavor is the best across all
systems, which will be investigated in detail in Section 4.3.2.

Figure 4.2 shows the accuracy of the quasi-particle energies5 across all our exchange-
dominated and correlated systems. As with the density, the error in quasi-particle
energies6, particularly in the correlated atom-like systems, is highly dependent on

4The density error is defined as the integrated absolute difference between the approximate and
exact densities.

5For dynamic screening the quasi-particle energies are computed using the first order expansion
εQP

i = ε0
i + 〈φ

0
i |Σ(ω = 0)|φ0

i 〉 and COHSEX and inertial are simply computed from the single-particle
eigenvalues (as these are both static methods).

6The quasi-particle energy error is defined as the absolute difference between the approximate
and exact quasi-particle energies.
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Figure 4.1: Color-chart showing the accuracy of the electron density for a
range of exchange-dominated and correlated systems. The rows are the
six systems under investigation: the one-, two- and three-electron QHO
and the one-, two- and three-electron atom-like systems (described in de-
tail in Section 4.3). The three sets of columns represent the approxima-
tion to the polarizability, P. Within each of these, the five columns corre-
spond to the approximation to the xc self-energy, Σxc, as determined by
the level of self-consistency (described in detail in Section 4.2 by Eqs. 4.2-
4.7). The color in each case represents the error in the density (given by
nerror =

1
N

∫ ∣∣nexact(x)− napprox(x)
∣∣ dx). A lighter color indicates a more

accurate density; the maximum density error for all systems is 2.0, which
would correspond to no overlapping of the densities.

the flavour of GW. First, looking at the first set of rows corresponding to the IPs, the
inertial screening preforms the best. This is expected, as inertial screening performs
significantly better than dynamic screening and COHSEX for the density and the
decay of the density far from any system depends directly on the IP. As anticipated
[13], the COHSEX in general performs worse than dynamic screening for the IPs.
The next set of rows shows the performance of the EA; in general the COHSEX
method outperforms inertial and dynamic, and is generally very accurate for all
flavors of GW. Inertial screening performs very similarly to dynamic GW. For the
fundamental gap, we find that the performance is highly sensitive to the flavor of
GW in the dynamic and COHSEX case, with COHSEX generally performing worse.
In contrast, the inertial screening generally performs well for the gap, independent
of the flavor used.
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Figure 4.2: Color-chart showing the accuracy of the quasi-particle ener-
gies, namely the ionization potential (IP), electron affinity (EA) and the
fundamental gap (GAP) for a range of exchange-dominated and corre-
lated systems. The three sets of rows are the different quasi-particle ener-
gies, within each of these sets, the rows are the six systems under inves-
tigation: the one-, two- and three-electron QHO and the one-, two- and
three-electron atom-like systems (described in detail in Section 4.3). The
three sets of columns represent the approximation to the polarizability, P.
Within each of these, the five columns describe the approximation to the
xc elf-energy Σxc as determined by the level of self-consistency (described
in detail in Section 4.2 by Eqs. 4.2-4.7). The color in each case describes
the error in the quasi-particle energy (given by εQP

error = |εQP
exact − εQP

approx|).
A lighter colors indicates a more accurate quasi-particle energy.
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4.3.2 Approximations to the self-energy

We now analyze in detail the effect various approximations to Σ has on the electron
density, and hence the corresponding KS potential, in some specific cases of interest.
As we vary our approximation to Σ we keep our approximation to P fixed, which in
this case is chosen to be the dynamic RPA as it is the most commonly used.

Figure 4.3: Comparison of G0W0 with LDA and HF starting or-
bitals for the correlated two-electron atom. (a) Exact, one-shot from
LDA (G0W0@LDA) and one-shot from HF (G0W0@HF) density. The
G0W0@LDA density is poor: both the central bump and the decay of the
density are incorrect. The G0W0@HF density is much more accurate, es-
pecially the decay. (b) Exact, G0W0@LDA and G0W0@HF KS-Hxc poten-
tial. The G0W0@HF VHxc(x) is much more accurate than the G0W0@LDA
VHxc: its asymptotic decay (arrow) and shape in the central region are cor-
rect; whereas G0W0@LDA VHxc has incorrect oscillations and an incorrect
asymptotic decay.

Initially we investigate the performance of one-shot GW. We begin with a corre-
lated system: 2 electrons in the atom-like potential (described above)7. Figure 4.3(a)

7This system is termed ‘correlated’ due to the poor performance of HF for the density and total
energy; the HF density for this system is shown in figure 4.5(b).
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shows the density calculated by one-shot GW with the LDA (G0W0@LDA) and HF
(G0W0@HF) starting orbitals, and the exact for comparison. G0W0@LDA yields a
poor density: there is a spurious central bump in the center of the system and an in-
correct decay from the center. By comparison, the G0W0@HF density is accurate: it
has the correct shape of the density in the center of the system and a highly accurate
decay.

Figure 4.3(b) shows the KS-Hartree exchange-correlation (Hxc) potential (VHxc(x) =
VKS(x)−Vext(x)) corresponding to each density. The G0W0@HF KS-Hxc potential is
accurate, and possesses the correct asymptotic decay (arrow). The G0W0@LDA KS-
Hxc potential is poor as it consists of incorrect oscillations and an incorrect asymp-
totic decay, as expected by the poor decay seen in the density.

(a)

(b)

Figure 4.4: Comparison of G0W0 for the LDA and HF starting orbitals
for the exchange-dominated two-electron QHO. (a) Exact, G0W0@LDA
and G0W0@HF density. The G0W0@LDA density is generally accurate,
although the magnitude of the ‘peaks’ are slightly incorrect. G0W0@HF
is almost exact. (b) Exact, G0W0@LDA and G0W0@HF KS-Hxc potential.
G0W0@LDA and G0W0@HF both exhibit the correct asymptotic decay of
the Hxc potential although the G0W0@LDA potential contains incorrect
spacial oscillations like for the correlated system; see figure 4.3(b).

We now investigate the performance of G0W0 calculation for an exchange-dominated
system: the two-electron QHO. As shown in figure 4.4(a), the G0W0@HF density is
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extremely accurate. Therefore, systems for which HF yields an almost exact den-
sity, a one-shot GW calculation retains the proper description of exchange already
achieved by HF; this is common across all of our tested exchange-dominated sys-
tems, as seen in figure 4.1. As well as the density, the KS-Hxc potential is accurate,
with a highly accurate asymptotic decay as shown in figure 4.4(b). G0W0@LDA
performs relatively well for this system, yielding a density with the correct shape,
although the ‘peaks’ are of incorrect height; see figure 4.4(a). Thus again demon-
strating that HF orbitals are a better starting point for yielding an accurate density
from a one-shot GW calculation than the LDA orbitals. As shown in figure 4.4(b),
the G0W0@LDA also gives a substantially worse KS-Hxc potential in comparison to
starting from HF orbitals. As with the correlated system, it contains incorrect os-
cillations. Despite this, the asymptotic decay far from the center of the system is
accurate in this case.

A density-functional calculation employing the LDA is a common starting point for
G0W0. However, we find this to be poor for yielding an accurate density, in particu-
lar as correlation becomes significant. We find that starting from HF orbitals yields
strikingly accurate densities, as one may expect owing to HF’s proper treatment of
exchange – this is common across all the model systems we investigated; see figure
4.1. We show in figure 4.2 that G0W0@HF also outperforms G0W0@LDA for the IP,
EA and fundamental gap, across all of our model systems. This is expected due to
HF’s exact treatment of exchange.

62



Chapter 4 Densities from existing and novel flavors of the GW approximation

(a)

(b)

Figure 4.5: Comparison of fully self-consistent GW and HF for a one- and
two-electron atom. (a) Exact, GW and HF density for the one-electron
atom. The HF density is exact as it is free from the SIE. The GW density
is more diffuse as the electron screens its own presence introducing the
self-screening error. (b) Exact, GW and HF density for the two-electron
atom. The HF density is largely incorrect due to the lack of screening
as the electrons are incorrectly pushed away from the center of the well.
The GW density is also largely incorrect due to over-screening of the bare
Coulomb interaction, and the electrons are incorrectly pushed towards
the center of the well.
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Next we investigate the accuracy of fully self-consistent GW. We compare the per-
formance of the density against HF for the one- and two-electron atoms. The one-
electron atom is shown in figure 4.5(a). For any one-electron system, the HF density
is exact owing to the cancellation between the non-local exchange operator and the
self-interaction error (SIE) introduced by the Hartree potential. The GW density on
the other hand is broadened relative to the exact, this is due to the screening of the
exchange potential resulting in the reduction of the self-interaction correction; this
error is termed the ‘self-screening error’ [22, 25, 54] and is due to the neglect of ver-
tices in Σ. We investigate this error in more detail and develop a novel correction in
chapter 5.

The two-electron atom is shown in figure 4.5(b). HF performs poorly for this system
due to the lack of electron screening which is required to model the electron corre-
lation; this causes the electrons to be artificially pushed away from the center of the
atomic potential. GW also performs relatively poorly for this system: the electron
interaction appears to be over-screened, causing the electrons to incorrectly fall into
the center of the atom. This failure of fully self-consistent GW stems from the absent
vertex corrections [23, 55].

Figure 4.6: Comparison of semi self-consistent GW0 for LDA and HF
starting orbitals for the two-electron atom. GW0@LDA preforms poorly
for the density, failing to predict the correct shape or decay rate; it is
similar in performance G0W0@LDA (figure 4.3(a)). Thus, adding the
Green’s function self-consistency is not sufficient to improve the method
when starting from LDA orbitals. GW0@HF performs much better than
GW0@LDA as it yields an accurate decay, but unlike G0W0@HF has the
incorrect shape in the highly delocalized central region.

Next, we analyze the performance of semi self-consistent GW0. As shown in figure
4.6, GW0@LDA performs poorly in a similar fashion to G0W0@LDA (see figure 4.3(a)
above). Therefore, it not the lack of self-consistency in the Green’s function which is
causing the poor performance, but the model of the screening. It is clear that the LDA
KS orbitals provide a poor starting point for GW calculations in terms of predicting
an accurate density (a trend we observe throughout this investigation), and start-
ing from HF orbitals is much more accurate, even in the case of a self-consistent G.
This can be seen across all our model systems in figure 4.1. One should note that al-
though HF orbitals are more computationally expensive to compute than those from
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a KS-LDA calculation, this is a relatively small cost in comparison to performing the
GW calculation itself.

Figure 4.1 shows the performance of all flavors of GW for the correlated systems
studied above and also the exchange-dominated QHO. It shows clearly that fully
and semi self-consistent GW perform poorly for the density for correlated systems,
and poorer than G0W0 starting from HF orbitals. We attribute this poor performance
to the missing vertex corrections to Σ and P. We propose that alternative mod-
els for the polarizability, P, could yield a more accurate density in the case of full
self-consistency GW. Specifically, we suggest energy-independent models of the
screening – various examples of which are investigated in detail in Section 4.3.3 –
as modifications of this type are substantially cheaper than including explicit vertex
corrections.

The KS-Hxc potentials shown in Figs. 4.3 and 4.4, which correspond to the densities
from one-shot GW, demonstrate the ability of MBPT to recreate features of the exact
KS potential. We find this to be the case for all our densities obtained via MBPT; in
general, the features of the exact potential are captured, however, when the density
is poor it naturally corresponds to a poor KS potential. Therefore, our focus for the
remainder of this chapter is on obtaining accurate densities from MBPT in order to
also obtain accurate KS potentials.

4.3.3 Approximations to the polarizability

We now investigate how the accuracy of the density is affected by different approx-
imations to the polarizability, P, namely the treatment of the energy dependence
which determines the correlation part of the self-energy. We consider three methods
as described in Section 4.2, specifically dynamic, static (COHSEX) and our proposed
form of static screening, ‘inertial screening’.
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Figure 4.7: Comparison of dynamic, static (COHSEX) and inertial GW
for the one-, two- and three-electron correlated atom. (a) Exact, dynamic,
COHSEX and inertial density for the one-electron atom. The COHSEX
density is remarkably similar to the dynamic density being overly dif-
fuse, thus exhibiting a similar self-screening error. The inertial density
performs much better than dynamic, reducing the diffusion by about 50%
(arrow 1). This demonstrates that the inertial screening method lessens
the self-screening error, yielding a more accurate one-electron density. (b)
Exact, dynamic, COHSEX and inertial density for the two-electron atom.
Again, the COHSEX density is remarkably similar to the dynamic with
the same shape and decay rate. On the other hand, the inertial density
is much more accurate: the decay is remarkably accurate (arrow 3) as
well as the overall shape. The only noticeable error is in the central re-
gion where the electrons are strongly delocalized (arrow 2). (c) Exact, dy-
namic, COHSEX and inertial density for the three-electron atom. Again
the COHSEX and dynamic density are almost indistinguishable. The in-
ertial density is again highly accurate in the decay (arrow 5), and with a
very accurate overall shape. However, an appreciable error in the central
region of strong delocalization persists (arrow 4).
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We begin by comparing the usual dynamically-screened GW (dynamic GW) and
static screening GW (COHSEX) when iterated to full self-consistency. As shown in
figure 4.7(a), the COHSEX density is remarkably similar to that of dynamic GW (the
same as shown in figure 4.5(a)) this shows that the COHSEX approximation also
experiences the self-screening error, thus it would require vertex corrections along
with self consistency if it were to yield accurate densities, as the decay of the density
is highly dependent on self-screening [28]. This can be seen in figure 4.7(b) and (c)
as the decay of the COHSEX density is as poor as the dynamic GW case. Another
property that is also highly dependent on the self-screening error is the ionization
potential, and as can be seen in figure 4.2, the COHSEX, just like dynamic GW, also
yields poor ionization potentials. Figure 4.7(b) and (c) show that in correlated sys-
tems of multiple electrons this trend continues: the COHSEX density is remarkably
similar to the dynamic GW density. This shows that the COHSEX approximation
captures well in its frequency-independent correlation potential the relevant effects
of the dynamic correlation potential. However, these effects ultimately yield a poor
density for correlated systems.

We now turn our attention to our inertial GW method for these correlated systems.
Figure 4.7(a) shows how inertial GW outperforms the dynamic GW density: it has a
reduced broadening (arrow 1), thus reducing the error in the density in comparison
to dynamic GW by about 50%. This shows that the inertial method is affected less
by the self-screening error due to the reduction in screening inherent in the method
relative to the over-screening within the COHSEX approach. This is supported in
figure 4.7(b) and (c), which show that the inertial GW method predicts highly ac-
curate decay rates (arrows 3 and 5). This is also reflected in figure 4.2 which shows
that the inertial method gives much more accurate ionization potentials for these
correlated systems.
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Figure 4.8: Comparison of semi self-consistent dynamic, static (COH-
SEX) and inertial GW0 for the two-electron correlated atom. (a) Exact,
dynamic, COHSEX and inertial GW0 density for the two-electron atom
starting from LDA orbitals. In the semi self-consistent case, the COH-
SEX GW0@LDA density is slightly less accurate than dynamic: the decay
rate (arrow 2) is poor and the density contains a large spurious bump
in the central region (arrow 1). Inertial GW0 shows significant improve-
ment, yielding an extremely accurate density over the entire system, with
a correct shape in the usually challenging strongly delocalized central re-
gion (arrow 1) and highly accurate decay (arrow 2). (b) Exact, dynamic,
COHSEX and inertial GW0 density for the two-electron atom starting
from HF orbitals. The COHSEX GW0@HF density is again in very good
agreement with the dynamic GW0@HF density, being overall poor, al-
though with a reduced incorrect bump in the central region in compari-
son to GW0@LDA. Thus again showing the greater performance in gen-
eral when starting from HF orbitals. The inertial GW0@HF density is
again accurate for the decay and overall shape.
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We now analyze the different models of screening in the semi self-consistent case.
As shown in figure 4.8(a) the COHSEX GW0@LDA density is slightly less accurate in
comparison to the dynamic and still features the incorrect bump in the central region
(arrow 1). Furthermore, it predicts an even poorer decay compared to dynamic. The
COHSEX GW0@HF still performs poorly. Again its yielded density is very similar
to that from dynamic GW0@HF; see figure 4.8(b).

For the semi self-consistent case, the inertial screening method again performs ex-
ceptionally well. As shown in figure 4.8(a), the inertial GW0@LDA is almost exact. It
has the correct shape across the entire system, including the highly delocalized cen-
tral region (arrow 1), and an extremely accurate decay rate (arrow 2). This large im-
provement which comes from employing inertial screening in a semi self-consistent
calculation is observed for all our model systems; see figure 4.1.

Figure 4.9: Comparison of semi self-consistent dynamic, static (COH-
SEX) and inertial G0W0 for the two-electron correlated atom. (a) Exact,
dynamic, COHSEX and inertial G0W0 density for the two-electron atom
starting from LDA orbitals. The COHSEX G0W0@LDA density is again
remarkably similar to the dynamic. inertial G0W0 in this case only shows
minor improvement, although more vastly improving the decay rate of
the density. (b) Exact, dynamic, COHSEX and inertial G0W0 density for
the two-electron atom starting from HF orbitals. The COHSEX G0W0@HF
density is again in very good agreement with the dynamic GW0@HF den-
sity, giving a very accurate density for this system and a much better
density than when starting from LDA orbitals. The inertial G0W0@HF
density is also just a minor improvement to dynamic G0W0@HF although
again yielding a highly accurate decay.
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Finally, we find that the density yielded from the COHSEX approximation is almost
indistinguishable from the full dynamic RPA for G0W0, and hence this is a trend
common among all systems studied. Figure 4.9(a) and (b) shows that the COHSEX
GW0@LDA density is only slightly less accurate than the dynamic GW0@LDA den-
sity, albeit largely inaccurate with an inaccurate central bump. We find in the one-
shot case that the inertial RPA still gives an improvement over the usual dynamic
RPA, but not as significant as in the self-consistent cases. This is again the case for
all of our model systems; as shown in figure 4.1 our inertial screening method al-
ways yields an accurate density, but this is a slightly reduced effect in the one-shot
case, especially when starting from LDA orbitals. Although in all cases we still find
it yields a very accurate ionization potential as shown in figure 4.2.

We emphasize that the accurate densities shown above have corresponding to KS
potentials which capture features of the exact KS potential. Hence, in general, den-
sities obtained employing our inertial screening, yield the most accurate KS poten-
tials.

4.4 Summary

In this chapter, we have assessed the accuracy of the electron density and quasi-
particle energies yielded from a variety of flavours of the GW approximation. We
studied finite systems consisting of few electrons for which the many-electron
Schrödinger equation can be solved exactly thus allowing us to compare densities
and energies obtained from MBPT to the exact quantities. We vary approximations
to the polarizablity as well as the self-energy. We also introduce our own static
approximation to the polarizablity, which we term inertial screening as it may be
thought of as increasing the mass of the electrons in the system in order to reduce
the over-screening inherent in the usual COHSEX static approximation.

In general, we find the accuracy of the density depends highly on the flavor of GW
used. However, in terms of the polarizablity, our inertial screening approximation
outperforms the standard dynamic and COHSEX approximations for all flavors of
GW for both the density and quasi-particle energies save a slightly worse perfor-
mance for the electron affinity. Employing the commonly used dynamic screening,
we find that one-shot methods perform best, due to the cancellation of errors be-
tween neglecting vertex corrections and lack of self-consistency in the calculation. In
this case we find Hartree-Fock orbitals are always a more successful starting point,
owing to their treatment of exact exchange. We find that the self-screening error,
caused by the neglect of vertex terms in the self-energy, is responsible for inaccura-
cies is the GW density and ionization potential. We investigate this in more detail in
the next chapter, along with proposing a novel correction to ameliorate the effects
of this error.

We find that the electron density obtained from many-body perturbation theory
(MBPT), in principle, corresponds to a Kohn-Sham (KS) potential which captures
features of the exact KS potential. However, depending on the level of approxi-
mation used within MBPT, the accuracy of the yielded density varies largely, thus
influencing the accuracy of the corresponding KS potential.
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Chapter 5

Correcting the GW self-screening error
with a local density functional

In chapter 4 we showed that densities and ionization potentials calculated using
the GW approximation are adversely effected by the self-screening error. The self-
screening error is the part of the self-interaction error that would remain within the
GW approximation if the exact dynamically screened Coulomb interaction, W, were
used, causing each electron to artificially screen its own presence. In this chapter
we propose a simple, computationally efficient correction to GW calculations in the
form of a local density functional, obtained using a series of finite training systems;
in tests, this eliminates the self-screening errors in the electron density and ioniza-
tion potential [28].
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5.1 Introduction

In chapter 4 we showed that commonly used flavours of the GW approximation
give very poor densities and ionisation potentials. It is vital that we improve upon
such limitations if we are to accurately predict the properties systems with appre-
ciable correlation. Higher-order terms beyond GW include a self-screening correc-
tion [22] related to the self-interaction familiar in density-functional theory (DFT)
[? 45]. Attempts to correct the entirety of the self-interaction error via explicit ver-
tex corrections have proved challenging [23, 27]. We adopt a physically more direct
approach to the self-screening correction. In large-scale calculations, a GW calcula-
tion normally takes a DFT calculation as its starting point. The goal is to improve
the quantities calculated from DFT, such as the ionization potential (IP) [20]. How-
ever, the self-screening error is known to have an adverse effect on the IP. In this
chapter we focus on the computation of the electron density from the Green’s func-
tion and IP. Again, we use the space-time method to solve Hedin’s equations [49].
We identify the self-screening error inherent in all GW calculations via the use of
an effective potential. We then propose a simple and computationally inexpensive
correction term that is a local potential added to the self energy and applicable to
any GW calculation. Finally we test our self-screening correction (ssc) by compar-
ing the GW+ssc electron density and IP to the exact quantities from systems of few
electrons in 1D where the many-electron Schrödinger equation (SE) can be solved
exactly. For these test systems we find that the spurious effects of the self-screening
error on the density and the IP are removed.

5.2 Investigating the self-screening error

Within GW the screened interaction W amounts to dynamically adjusting the strength
of the bare Coulomb interaction between electrons. One merit of the exchange oper-
ator of Hartree-Fock theory is that it exactly corrects the self-interaction error intro-
duced by the Hartree potential. If the Coulomb interaction in the Hartree-Fock ex-
change operator were screened using the exact irreducible polarizability P, Hartree-
Fock’s self-interaction correction would be improperly reduced, so that part of the
self-interaction error – the self-screening error – remains uncorrected. It may be
thought of as each electron artificially screening its own presence. It follows that the
self-screening error is largest when screening, and therefore correlation, is strong
[22].

The only source of error in a GW calculation of the hydrogen atom (H) is self-
screening because H is a one-electron system, and the RPA screening is exact for one
electron (or strongly localized electrons) as no electron-hole interactions are present.
This is apparent if one looks at the correlation part of the self-energy for this system,
which should be zero. Instead, it consists of the spurious self interaction [25].

We now employ a simple one-dimensional, one-electron model to investigate the
self-energy of a GW calculation. In this chapter the electrons are again treated as
like-spin to more closely approach the nature of exchange and correlation in systems
of many electrons, hence each electron occupies its own distinct orbital. First we
model one electron in a 1D atomic potential, Vext = −1.0/(α|x|+ 1) where α = 0.05.
The potential loosely confines the electron, which clearly displays the adverse effect
of the self-screening error on the GW density and energy (described above); see fig-
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ure 5.1(a). We observe the effect self-screening has on the density by comparing the
GW density to the exact. As in this one-electron system, the screening has been accu-
rately described by the RPA; the self-screening error is the only error present in the
system, thus allowing us to investigate the effect of self-screening on the correlation
part of the self energy.

Figure 5.1: GW self-screening error for a one-electron atom. (a) The exact
density, fully self-consistent GW density, and the external potential. The
GW density is more diffuse as the electron screens itself; the decay rate
of the density towards the edge of the system is wrong. (b) The self-
consistent GW Hartree and effective exchange potentials (left scale), and
effective correlation potential (right scale) (see Eq. 5.1). The Hartree and
effective exchange potentials cancel out, but there is a spurious non-zero
effective correlation potential that results in the artificial spreading of the
density away from the center of the system (a). This effective correlation
potential is responsible for the entire self-screening error.

Figure 5.1(a) shows the GW and exact electron densities. Compared to the exact, the
GW density is more diffuse and its exponential decay is incorrect far from the center.
If these inaccuracies in the density are a result of the self-screening, the correlation
part of the self-energy will be non-zero. First we split the self-energy (Σ) into its
separate contributions: Σ = VH + Σx + Σc, the Hartree potential (VH), exchange
term (Σx), and the correlation part (Σc). Σx and Σc are non-local, and Σc is energy
dependent. To get a clear picture of what effect a particular part of the self-energy is
having on our only occupied orbital (φ), we define an effective local potential, akin
to DFT:

Veff
Hxc (x) =

1
φ (x)

∫
Σ
(
x, x′, ε

)
φ
(
x′
)

dx′, (5.1)
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where ε is the corresponding eigen-energy 1. The three parts VH, Veff
x , Veff

c , defined
in this way, may be examined separately.

Figure 5.1(b) shows the Hartree, effective exchange and correlation potentials for
our one-electron atom. The GW Hartree and effective exchange potentials com-
pletely cancel, as expected. However, there is a small correlation potential that is
solely responsible for the error in the GW density. We call this potential the self-
screening potential Vss which is present in all GW calculations of any number of
electrons (N). Examining the shape of Vss we see this potential acts to draw the
density away from the center of the system.

5.3 Developing the local self-screening correction

References [56, 57, 58, 59] note that a self-interaction error arises in the RPA total
energy owing to the lack of a vertex in P. However, our preference is to focus on
developing an effective vertex in the self-energy Σ, in order to retain the exact po-
larizability of a one-electron system.

Reference [44] proposes to correct the self-screening error via an orbital- and spin-
dependent screened interaction and is applicable to methods in which the Green’s
function is constructed from normalized single-particle orbitals. Our proposed self-
screening correction, because it consists simply of a spatially local potential, is ap-
plicable to all flavors of GW.

We define a potential Vssc[n](x), that, when added to the GW self-energy, ΣGW ,
strives to yield a self-energy with self-screening removed:

ΣGW+ssc = ΣGW + Vssc[n](x), (5.2)

where the density is obtained from the Green’s function G.

We construct a local density approximation for Vssc[n](x). To do so we choose a set
of finite, centrally homogeneous one-electron ‘density slabs’, as used in reference
[47] to construct local-density approximations to the overall exchange-correlation
functional of DFT 2. We use one-electron slabs because, as we have established, in a
one-electron system the self-screening is the only source of error in a GW calculation.
The density of each slab is chosen to be n0e−mx12

+ 10−4 · e−0.007|x|, where n0 is the
height of the slab, and m follows from normalization; see, e.g., figure 5.2(a). Our
set of slabs have a range of plateau densities 0.03 ≤ n0 ≤ 0.58. For each of these
densities we apply the single orbital approximation (SOA) [60, 61], which is exact for
one electron, to obtain the external potential that defines this slab density. We then
use our set of external potentials to calculate the corresponding exact total energy
(E) for each slab density in turn via the single-particle SE.

1As we use the space-time method we have access to the self-energy in the imaginary frequency
domain, so for the purposes of Eq. 5.1 we approximate Σ (ε) ≈ Σ

(
ε f

)
where ε f is the Fermi energy.

To check this is a good approximation, once we have constructed the total effective potential, we
solve the single-particle SE using Veff

Hxc to ensure this potential gives the same density as the GW
calculation.

2These ‘density slabs’ are systems with uniform density within a finite region, resembling the
homogeneous electron gas, and decaying to zero outside this region. Local approximations may
therefore be constructed from results for a set of such slabs spanning a range of densities.
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Next we perform a fully-self consistent GW calculation for each slab system us-
ing the corresponding external potential to obtain the total GW energy (EGW). We
choose to calculate EGW via the effective potential experienced by the single electron
using Eq. (5.1) – note this is not the only means of calculating EGW . To calculate EGW ,
we construct an effective potential (Veff = Vext + Veff

Hxc). We then solve the single-
particle SE to find the lowest eigenvalue of this one-electron system, which is EGW
1. Finally, we define the self-screening energy per electron as εss = EGW − E.

Figure 5.2(a) shows an example of one of our slabs with height n0 = 0.22. The
GW density shows the effect of the self screening, and hence is not homogeneous in
the central region whereas the exact is. Figure 5.2(a) also shows the effective self-
screening potential. Figure 5.2(b) shows the self-screening energy as a function of
the density εss(n) for our whole range of slab systems (crosses)3. We require that
εss(n) must be zero when n = 0 as there is no self-interaction, and therefore no self-
screening error. We then apply a fit to this data yielding a functional form of the
self-screening energy per electron:

εss(n(x)) = −an(x)e−bn(x)c
, (5.3)

where a = 4.09268, b=9.20609 and c=0.53652.
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Figure 5.2: (a) An example one-electron finite, homogeneous density of
height n0 = 0.22, compared to the density produced by a self-consistent
GW calculation with the same external potential. The self-screening error
causes the slab to curve as the electron screens itself. This is illustrated
by the self-screening potential. (b) The crosses show the computed self-
screening energy εss per electron of each of the slab systems, with a cross
added for εss(n = 0) = 0. A fit for εss is applied to these points. The
corresponding self-screening potential Vss is computed as the functional
derivative of εss (Eq. (5.4)).

3Due to the increasingly large imaginary energy grids required, the data points become more
sparse as we approach n = 0.
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Next we compute the local functional derivative, as follows 4

Vss(n) = εss(n) + n
dεss

dn
, (5.4)

in order to determine the local self-screening potential functional Vss(n); shown in
figure 5.2(b). It follows that Vssc[n](x) ≈ −Vss(n(x)), in order for our correcting
potential Vssc to cancel the spurious self-screening of the electrons. Thus, our final
local-density functional for correcting the GW self-screening error is

Vssc(n(x)) = ane−bnc
(2− bcnc) , (5.5)

where a, b and c are given above. When we apply the GW calculation with our local
self-screening correction (GW+ssc) method to the training slabs via the self-energy:

ΣGW+ssc = ΣGW + Vssc(n(x)), (5.6)

we obtain the exact energy 5.

5.4 Effectiveness of the local self-screening correction

We test the effectiveness of our self-screening correction (Eq. (5.5)) by employing it
for GW calculations of various flavors (including self-consistent GW) for the one-
electron atom described above, where self-screening is the only source of error. Fig-
ure 5.3 shows the same one-electron model system as in figure 5.1; now the fully
self-consistent GW+ssc is also shown. The GW+ssc density is in excellent agreement
with the exact density, with the peak height and decay matching. (We show below
that the IP predicted by the GW+ssc is also very accurate.) Figure 5.3 also shows our
local self-screening correction potential Vssc and the GW effective correlation poten-
tial Veff

c = Vss; they cancel out very well thus removing the self-screening error,
hence showing the success of correcting the self-screening error with a local poten-
tial. Here we only show the density calculated from self-consistent GW. However,
we also find that the our self-screening correction is equally successful when applied
to all of our flavors of GW for this system.

4The total self-screening energy, Ess, is approximated to depend on the self-screening energy per
electron as follows: Ess =

∫
n (x) εss (n) dx

5But not the exact density, since the density of each slab system is extremely sensitive to the
potential.
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Figure 5.3: Applying our self-screening correction to the one-electron
atom of figure 5.1. The GW density is broadened relative to the exact
due to the self-screening error, which is the only error present in the one-
electron system. The self-screening-corrected GW density is in excellent
agreement with the exact, thus demonstrating the success of our func-
tional. We can see that our self-screening correction potential successfully
acts to cancel the self-screening potential present in the self-consistent
GW calculation, this also has the effect of correcting the decay of the ef-
fective xc potential far from the finite system.

We also investigate two- and three- electron atoms using the same form of exter-
nal potential as the one-electron atom (above), with α = 0.05 for two electrons and
α = 0.02 for three electrons. Figure 5.4(a) shows that our self-screening correction
significantly improves the GW density for the two-electron atom; it corrects the de-
cay rate of the density, thus improving the predicted IP (see Table 5.1). The density
maintains the incorrect central feature due to the electron-hole interaction neglected
by the RPA in this delocalized region, which could in-principle be corrected by ver-
tex corrections to P [43].
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Figure 5.4: (a) Applying our self-screening correction to the two-electron
atom. The GW density is again dispersed compared to the exact. The self-
screening corrected GW density is in excellent agreement with the exact
in region 2, where the electrons are strongly localized as the HOMO or-
bital is dominant in this region, and so the RPA gives a good account of
the screening. Furthermore, the decay of the density is corrected, thus im-
proving the IP of the system. In region 1 the density is less accurate owing
to the delocalization of the electrons leading to electron-hole interactions
present that are neglected in the RPA. Vertex correction to the polariz-
ablity would be required to correct the density in this region [43]. (b) Ap-
plying our self-screening correction to the three-electron atom. The GW
density is once again diffuse compared to the exact. The self-screening
corrected GW density is in better agreement with the exact, it corrects the
decay rate and overall shape of the density, again improving the IP of the
system. The height of the central peak remains incorrect, again due to the
electron-hole interactions in this region neglected by the RPA.
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Figure 5.4(b) shows the effectiveness of our self-screening correction for the three-
electron atom. Again, we find the self-screening-corrected GW density is in better
agreement with the exact; it corrects the decay rate of the density far from the cen-
ter of the system, again improving the predicted IP (see Table 5.1), and the overall
shape of the density. The height of the central peak remains incorrect, which again
suggests a failing of the approximation to the polarizability P and not the presence
of self screening.

This ssc also improves G0W0 calculations. In this case the ssc is applied in the same
way as above: the local potential is added to the self-energy via Eq. 5.2. When
applied to G0W0 starting from a conventional LDA calculation, the density errors
are reduced by 16− 50% for these model systems.

Table 5.1 shows the IPs predicted by GW via two different methods for all three of
our atoms, with and without our self-screening correction. Our first method extracts
the IP from the density, which in principle can be done by determining the decay

rate of the density far from the center of the system: lim|x|→∞ I = 1
4

(
∂ ln(n)

∂x

)2
. In

practice, we find it less computationally onerous to determine the exact KS poten-
tial corresponding to the GW density for each atom in turn using the algorithm of
reference [46] and obtain the highest occupied KS eigenvalue which is the negative
of the IP. When calculated in this way, the GW+ssc IP is strikingly accurate. (Similar
results are obtained for non-self-consistent versions of GW.) We expect our ssc to
similarly correct the IP for any N-electron system as localization becomes absolute
far from the center of the system. Hence, in this region, the HOMO orbital is domi-
nant and the RPA gives a good account of the screening. Therefore, the decay rate of
the GW+ssc density is very accurate and thus so is the IP. This can be seen in figure
5.4 (region 2 in (a)). Second, we calculate the IP via the quasiparticle (QP) energies.
In contrast to the HOMO energy, these QP energies are affected by the electron-hole
interactions present in the two- and three-electron atoms, hence the predicted IPs
are not as accurate relative to extracting the IP from the density, but are generally
improved by the ssc; see Table 5.1.

Table 5.1: The IPs predicted by GW, and GW with our self-screening correction,
against the exact for the one, two and three electron atoms. IPs extracted via the KS
potential and QP energies are shown.

N GW GW+ssc Exact
1 0.908 0.900 0.900

KS 2 0.624 0.610 0.611
3 0.662 0.641 0.642
1 0.908 0.900 0.900

QP 2 0.577 0.577 0.611
3 0.675 0.654 0.642
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5.5 Summary

In conclusion, we propose a simple self-screening correction which is a local po-
tential added to the self-energy of any GW calculation. The correcting potential is
a local functional of the electron density. We find that the self-screening error is
removed from our GW calculations of various test systems when our correction is
employed. The electron density is significantly improved for all systems studied.
In one-electron systems, and regions of high localization in many-electron systems,
the density is almost exact. Beyond our self-screening correction, electron-hole cor-
rections to the screening would be required in the delocalized regions. Furthermore
the IPs predicted by GW are improved by our correction.
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Chapter 6

Advantageous nearsightedness of
many-body perturbation theory

For properties of large-scale interacting electron systems, Kohn-Sham (KS) theory is
often favored over many-body perturbation theory (MBPT) owing to its low compu-
tational cost. However, the exact KS potential can be challenging to approximate, for
example in the presence of localized subsystems where the exact potential is known
to exhibit pathological features such as spatial steps [62]. By modeling two elec-
trons, each localized in a distinct potential well, we illustrate that the step feature
has no counterpart in MBPTs (including Hartree-Fock and GW) or hybrid methods
involving Fock exchange because the spatial non-locality of the self-energy renders
such pathological behavior unnecessary. We present a quantitative illustration of the
orbital-dependent nature of the non-local potential, and a numerical demonstration
of Kohn’s concept of the nearsightedness [32, 63] for self-energies, when two distant
subsystems are combined, in contrast to the KS potential. These properties empha-
size the value of self-energy-based approximations in developing future approaches
within KS-like theories.
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6.1 Introduction

When considering the multiple approaches to the many-electron problem it is key to
compare and contrast their respective strengths and weaknesses. Many-body per-
turbation theory (MBPT) is widely used for computing the electronic structure and
properties of materials and molecules [55, 13, 64, 24, 49, 15, 52, 65, 50], yet approx-
imate Kohn-Sham density functional theory (KS-DFT) is often favored owing to its
accuracy at a low computational cost [? 45, 66, 31, 67]. The price for the computa-
tional efficiency is the difficulty in developing advanced approximations to the spa-
tially local exchange-correlation (xc) potential of KS theory, Vxc(r) [68]. It has been
noted that some modern approximate density functionals tend to focus on calculat-
ing accurate energies from empirical data to the detriment of the density [69]. In
finite systems, reproducing the exact many-electron density requires Vxc(r) to con-
tain pathological features [70, 62, 71], which common approximations fail to capture
[60]. Thus practical calculations can be less reliable, e.g. for systems with strong
localization such as molecules [12]. In MBPT, on the other hand, exchange and cor-
relation are described using a spatially non-local and energy-dependent potential,
the self-energy operator. Generalized Kohn-Sham approaches [72] have much in
common with MBPT and are known to avoid some of the pathological aspects of KS
theory insofar as quasiparticle energies are concerned [73, 74].

We describe the many-electron density in both exact KS-DFT and two examples of
MBPT for two interacting1 electrons in a 1D asymmetric double-well external po-
tential (figure 6.1(a)) for which a spatial step is known to be present in the exact
KS potential [62]. As in previous chapters, we use like-spin electrons in order to
more closely capture the nature of exchange and correlation in larger systems. We
calculate the exact KS potential for this system by first solving the many-electron
Schrödinger equation using the iDEA code [46, 28] in order to find the exact ground-
state many-electron density. Then we reverse-engineer the KS equations to find the
corresponding exact KS potential for this system, VKS(x).

6.2 The exact Kohn-Sham potential

Figure 6.1(a) shows the exact many-electron density for our double-well system.
The Coulomb repulsion between the electrons forces each electron in the system
to localize in a distinct potential well. (In the absence of the Coulomb repulsion,
both electrons would occupy the right well of the external potential as the lowest
two non-interacting single-particle states of this system are localized in this well.)
Figure 6.1(a) shows the KS potential which yields the exact density for this system:
a spatial step is present in the potential2. The step acts to raise the right well by
a constant relative to the left well. In doing so, the lowest energy state of the left
well is made lower than the first excited energy state of the right well, and thus one
occupied KS orbital is localized in the left well and the other is localized in the right
well. This step feature has a non-local dependence on the density and is therefore
beyond the capability of any common approximations [62, 60] to the KS-xc potential,

1We again use a softened Coulomb repulsion (|x− x′|+ 1)−1 as is appropriate in one dimension.
2While the KS potential shown yields the exact density to within computational precision, the

localized nature of the two subsystems places a numerical limitation on the exact height of the step.
However, analysis [62] shows that it must be at least 0.03 a.u.
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such as the LDA [45] or GGAs [75].

Figure 6.1: Exact many-electron density for two electrons in a 1D asym-
metric double well and the corresponding exact KS system. (a) The exact
many-electron and non-interacting density, the external potential and the
exact KS potential. The external potential consists of two wells. The exact
many-electron density corresponds to one electron in each well. Both of
the non-interacting electrons occupy the right well. The exact KS poten-
tial for this system contains a step feature which raises the energy of the
right subsystem by a constant, ensuring the correct distribution of elec-
trons between wells. (b) The Hartree potential consists of two repulsive
bumps centred one on each well, and the KS-xc potential is essentially
the negative of the Hartree potential plus the step.

The step in the KS potential is sharp owing to the large spatial separation of the
potential wells in our system, which in turn means that the electrons are strongly
localized. The step forms at the point in the density where the local effective ioniza-
tion potential (IP) changes [62]. This change occurs at the interface between the two
individual potential wells (subsystems).
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6.3 The exact self-energy for the ground-state density

We now turn to the Hartree-Fock (HF) description of this system, the lowest level
of MBPT. The HF ground-state density is extremely precise as expected for what is
essentially two distant one-electron subsystems, this is shown in figure 6.2.

Figure 6.2: The double well ground-state density from by HF theory.
As this system is composed of two separate subsystems a large distance
apart, there is negligible overlap between the left and right orbitals and
therefore negligible correlation. Therefore we see that HF yields an al-
most exact density.

In figure 6.3(a) we show the Fock operator for this system: no features correspond-
ing to the step in the KS potential are visible and the operator appears to have an
approximately local dependence on the density. F is seen to be non-local on the
length scale of the subsystem, but not of the overall system. Our analysis of the
nearsightedness of the Fock operator below constitutes a quantitative confirmation
of these observations.
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6.4 The nearsightedness of many-body perturbation the-
ory

Our concept of an effective orbital-dependent local potential introduced in chapter 5
is illustrative here. For a particular orbital, the mathematical effect of a non-local po-
tential is exactly equivalent of an effective local potential; in the case of the exchange
operator this is

Veff
x,m(x) =

1
φm(x)

∫
F(x, x′)φm(x′)dx′. (6.1)

It is key to note that this effective potential is different for every orbital, in contrast
to KS theory in which every electron feels the same local effective potential.

Figure 6.3(b) shows the effective potentials felt by φ1(x) in HF theory3. This orbital
is localized in the left well. It feels the external potential and the Hartree potential
of the whole system, which consists of two large positive bumps; one is in the region
of the left well and the other the right well. In addition, φ1 feels its effective local
exchange potential, which acts to cancel out the Hartree potential on the left, i.e.,
the self-interaction correction (SIC), but is negligible on the right; see figure 6.3(b).
Figure 6.3(c) shows the resulting net potential felt by φ1: the left electron feels the
Coulomb repulsion due to the right electron, ensuring that each electron occupies its
own well in accordance with the many-electron picture. Thus, for weakly correlated
system, such as this one, HF successfully localizes electrons. For systems comprising
more complex separated subsystems, further vertex corrections beyond GW can be
significant, but nearsightedness should remain assured by the self-energy diagrams’
analytic dependence on the single-particle orbitals, with terms connecting the two
systems going to zero at large separations.

It is straightforward for the Fock operator to remove the self-interaction (SI) part of
the Hartree potential for each electron separately owing to to its spatial non-locality. In
contrast, the spatially local exact xc potential does not have such freedom, and must
remove the SI part of the Hartree potential for all electrons simultaneously, this acts
to essentially cancel the whole Hartree potential; see figure 6.1(b). Thus, without
each electron experiencing the Hartree potential due to the other electron, the KS
potential must instead include a spatial step at the interface between the electrons.

3To handle the singularity arising from the node in φ1(x) which occurs in the vicinity of the right
well, a careful numerical treatment of the denominator of Eq. 6.1 is necessary.
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Figure 6.3: The double well described by HF theory. (a) The Fock oper-
ator, which as shown in figure 6.2 yields a highly accurate density. The
pathological features in the exact KS potential are absent. (b) Effective
potentials (see text) experienced by φ1. It ‘feels’ the external potential
Vext(x), the Hartree potential VH(x) of the whole system, which consists
of a repulsion bump from both orbitals (φ0 and φ1) and its own effective
exchange potential Veff

x,1(x) that acts to cancel the Hartree potential due to
its own presence (SIC). (c) The overall effective Hartree-xc potential felt
by orbital φ1 – the electron in the left well feels the repulsion of the elec-
tron in the right well and vice-versa resulting in a density corresponding
to one electron in each well as per the many-electron density.
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To demonstrate that the Fock operator of the whole double-well system consists of
the SIC for each electron and no additional features we calculate the Fock operator
for each one-electron subsystem completely independently (FL and FR). For the case
shown in figure 6.34, FL + FR reproduces the Fock operator for the composite system
to high accuracy as shown in figure 6.4: ∼ 0.03 a.u. (∼ 2% of the scale on which F
varies)5, i.e.,

F(x, x′) = FL(x, x′) + FR(x, x′). (6.2)

Equation 6.2 becomes exact in the limit that the subsystems are infinitely separated.
This property of F (and more generally the self-energy in MBPT) is an example of
Kohn’s ‘nearsightedness’ principle [76], in which the physical properties of one sub-
system are blind to those of another, distant, subsystem. In contrast, this is not the
case for the exact KS potential. The exact Vxc(x) for the left subsystem is simply the
negative of the Hartree potential, and the same for the right subsystem. Therefore
their sum does not reproduce the KS potential for the whole system as this contains
the step at the interface between the subsystems, i.e.,

Vxc(x) = VL
xc(x) + VR

xc(x) + Sxc(x). (6.3)

This highlights the straightforward nature of a non-local potential compared to a
local potential.

4The plots show the non-local Fock operator on our spatial grid, and hence in our spatial basis.
5The density calculated from employing FL + FR in the HF equations for the whole system yields

a density which is very similar to the true HF density for this system: ∼ 0.01 a.u. (∼ 2% of the scale
on which n varies). This value approaches zero as the wells are separated.
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(c)

Figure 6.4: Demonstration that the sum of the Fock operators of the left
and right subsystems yields the Fock operator of the composite system.

88



Chapter 6 Advantageous nearsightedness of many-body perturbation theory

6.5 Orbital swapping in the GW method

We now move onto the GW approximation, the next level of MBPT. First, we demon-
strate that the density from a one-shot (G0W0) calculation is surprisingly accurate
even when starting from a set of orbitals which yield a very poor initial density.
In our case we choose to start from the non-interacting orbitals of the external po-
tential which yield a density that is quantitatively different from the many-electron
density; see figure 6.1(a). As shown in figure 6.5(a), the G0W0 correctly gives one
electron in each well in contrast to its starting point, but the shape of the density in
the subsystems is broadened relative to the exact. We find that the self-energy swaps
occupied and unoccupied starting orbitals6 when the Dyson equation is solved as
shown in figure 6.5(b). As the G0W0 case has a non-local potential these orbitals can
be moved independently and thus the self-energy needs no step feature. This is in
contrast to the KS case where all of the orbitals in the right well are shifted simul-
taneously by the magnitude of the step in order to get the correct occupation of KS
electrons. This swapping mechanism implies that the accuracy of G0W0 depends on
the features of the unoccupied as well as the occupied starting orbitals.

6We use first order perturbation theory when computing the updated quasi-particle energies from
the self-energy.
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Figure 6.5: GW calculations for the double-well system. (a) One-shot
G0W0 density starting with non-interacting (NON) orbitals yields a sur-
prisingly accurate density, although the shape of the density in each well
is broadened relative to the exact. The fully self-consistent GW density is
much more accurate, as this broadening is significantly reduced. (b) Or-
bitals are swapped in the one-shot case. The horizontal lines (ε0 and ε1)
indicate the non-interacting single-particle starting energies, where the
circle on the line indicates in which of the two wells a particular orbital
occupies – a filled circle indicates an occupied state and a hollow circle
represents an unoccupied state. Initially both of the occupied orbitals are
localized in the right well, thus giving the non-interacting density; see
figure 6.1(a). In the first iteration of both GW calculations the orbitals
of the self-energy are swapped; the HOMO orbital (blue) is raised above
the Fermi energy, and the LUMO (red) is brought below. This means that
after the swap one electron occupies the left well and the other the right,
as required.
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Second, we perform a fully self-consistent GW calculation for this system. The fully
self-consistent GW density is very accurate, albeit slightly worse than HF. This small
error in this density is due to the self-screening error [25, 44, 54, 27, 44, 27], which
arises from a spurious non-zero correlation part of the self-energy as shown in figure
6.6.

Figure 6.6: The self-screening potential for the double well system of the
fully-self consistent GW method at iω = 0. This is the spurious part of
the non-zero correlation self-energy.

We showed in chapter 5 that the self-screening error may be accurately corrected by
a local-density-type expression which therefore retains Σxc’s nearsighted character
within each well.

6.6 Relationship to the derivative discontinuity

We also consider an open system, connected to an electron reservoir, allowing a
fractional number of electrons. The exact KS potential experiences a jump by a spa-
tially constant shift ∆ when the number of electrons, N, in the system infinitesimally
surpasses an integer [70]. This is known as the ‘derivative discontinuity’ as it is a
result of the discontinuity in the derivative of the total energy as a function of N. It
is essential in KS theory if one wishes to determine the electron affinity (EA) from
the single-particle KS energies of a system alone, yet it is not reproduced at all by
common approximations [77, 68].

We now model only the right-hand well of our double-well system; see figure 6.7(a).
We investigate what happens to the non-local potential of HF when δ = 10−4 of an
electron is added to a one-electron system. First we calculate the exact density for
the 1+ δ-electron system and the corresponding exact KS potential; see figure 6.7(a).
When δ is small but finite, the shift ∆ is a no longer uniform throughout all space
but a plateau – it is uniform in the center but at each side has a step in the potential;
see figure 6.7(a). The height of these steps is the discontinuity ∆. In the limit that
δ → 0+, these steps form further and further away from the well and hence the
plateau becomes a spatially uniform shift [78].
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Figure 6.7: (a) The right-hand well of our double-well system with 1.0001
electrons. The exact electron density is indistinguishable from the HF
density. The exact KS potential has a plateau in the vicinity of the well
with height ∆. This plateau occurs in the KS system as a result of the
derivative discontinuity. (b) The corresponding Fock operator contains
no features which correspond to the steps in the KS potential.
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The Fock operator corresponding to the 1 + δ-electron system is shown in figure
6.7(b). The steps in the KS potential do not correspond to any features in this Fock
operator, and thus do not occur in the effective exchange potentials either. Instead,
when δ of an electron is added to the HF system it experiences a different effective
potential to the one felt by the whole electron which already occupies the well. The
additional fraction of an electron experiences essentially just the Hartree potential
of the whole electron originally in the system plus the external potential; whereas
the whole electron in the system feels effectively no Hartree potential from δ. Thus
δ has a higher energy than the other electron in the system which in turn determines
the system’s new IP without the need for any discontinuous change to the Fock op-
erator. This reasoning also applies to the case for hybrid density functionals (which
combine the Fock operator with a usually local xc potential) [79, 34, 80] and other
schemes within generalized KS theory [72, 74] as well as the GW approximation, all
of which are known to yield improved values for the fundamental gap (IP minus
EA) compared to (approximate) Kohn-Sham gaps [79, 34].

6.7 Summary

In conclusion, a quantitative analysis of orbital-dependent effective potentials and
the nearsightedness of the self-energy operator shows that the crucial pathological
features of the exact Kohn-Sham exchange-correlation potential – beyond the ca-
pability of common approximations – are not required in the non-local potential
of many-body perturbation theory: in effect, each electron is able to experience a
different local potential. This emphasizes the potential value of constructs from
self-energy methods in developing future approaches within KS-like theories.
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Chapter 7

An alternative approach to the
screened exchange potential:
Koopmans-compliant hybrid
functionals

In this chapter we consider an alternative approach to the GW screened exchange
potential as a way of moving beyond Hartree-Fock theory; Koopmans-compliant
hybrid functionals [81]. We evaluate the accuracy of electron densities and quasi-
particle energy gaps given by hybrid functionals by directly comparing these to
the exact quantities obtained from solving the many-electron Schrödinger equation.
We determine the admixture of Hartree-Fock exchange to approximate exchange-
correlation in our hybrid functional via one of several physically justified constraints,
including the generalized Koopmans’ theorem[47]. We find that hybrid functionals
yield strikingly accurate electron densities and gaps in both exchange-dominated
and correlated systems. We also discuss the role of the screened Fock operator in
the success of hybrid functionals.
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7.1 Introduction

A key measure of success for any electronic-structure theory is its ability to yield
accurate electron densities and energies for many-electron systems. For example,
Kohn-Sham (KS) density functional theory (DFT) [29, 30] is in principle exact, but
the use of an approximate exchange-correlation (xc) potential, such as the local den-
sity approximation (LDA) [82] or the generalized gradient approximation (GGA)
[75], is associated with a self-interaction error which can cause the spurious delo-
calization of localized charge [83] and incorrect dissociation behavior for molecules
[84]. Recently, hybrid functionals that mix Hartree-Fock (HF) exchange with a (semi-
)local approximation (such as the LDA or GGA) [79] have become popular as an
alternative approach to xc. However, hybrids introduce at least one additional pa-
rameter, the mixing parameter α. This is often determined empirically, e.g., via ex-
perimental data, or through the adiabatic connection [85]. We determine α using
a group of more physically justified constraints, including the generalized Koop-
mans’ theorem [86, 87, 88, 89, 81]. While it has been shown that this constrained
hybrid approach results in ionization energies and band gaps close to experimental
values [86, 88], to date the electron density of this approach has not been directly
compared to the exact density.

As Medvedev et al. [69] argue, progress in the accuracy of electronic structure calcu-
lations requires improvements in both energies and densities. Srebro et al. indirectly
assessed densities obtained via hybrid functionals using the electric field gradient
at the nucleus [90]. Reference [91] obtained densities from popular empirical hy-
brid functional parameterizations and found sensitivity to the value of the various
mixing parameters.

In order to address the density more directly, we consider our set of model systems
where the many-body problem can be solved exactly using the iDEA code, allowing
for a direct comparison of densities, energy gaps and ionization potentials (IPs) ob-
tained from the constrained hybrid approach to the exact values. We show that an
ab initio determination of α results in hybrid functionals yielding extremely accurate
densities and gaps.

7.2 Koopmans’ compliant hybrid functionals

The exact total energy E (of a many-electron system) is piecewise linear with respect
to the number of electrons, N [70, 92]. In exact KS DFT, the slope of each straight-line
segment ∂E/∂N is shown by Janak’s theorem to equal the highest (partly) occupied
molecular orbital (HOMO) eigenvalue [93]. The usual approximate density func-
tionals (LDA and GGAs), and HF, exhibit nonzero curvature ∂2E/∂N2, which can
lead to qualitatively wrong physical behavior [10, 12, 68]. The curvatures are of
opposite signs which means that hybrid approximations benefit from a partial can-
cellation of these errors[86, 87]. An illustration of the curvature is shown in figure
7.1
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Figure 7.1: Illustration of the deviation from the piecewise linear be-
haviour of the energy against electron number curve for various approx-
imations. Note the opposite curvature of the LDA and HF methods can
be cancelled in a hybrid approach.

The exact total energy difference E(N−1)− E(N) is both the ionization energy of
the N–electron system, I(N), and the electron affinity of the (N−1)–electron sys-
tem, A(N−1). In HF, the equivalent of Janak’s theorem [94] shows that the slope
(∂E/∂N)N−δ is equal to the HOMO eigenvalue, and (∂E/∂N)N+δ to the LUMO
eigenvalue. In exact KS and exact generalized KS DFT, the LUMO eigenvalue dif-
fers from A(N−1) by a discontinuity, ∆, in the xc potential [70]. Thus all three
quantities εN(N−1) + ∆ 1, εN(N) and E(N) − E(N−1) should, in principle, be
equal, where ∆ is non-zero for exact DFT methods. But for approximate methods
such as hybrids where exchange and correlation are explicitly analytical functionals
of the single-particle orbitals and therefore exhibit zero derivative discontinuity ∆,
the first quantity becomes εN(N−1) [94, 95, 72]. We may therefore identify three
conditions,

(A) εN(N−1) = −A(N−1) ≡ E(N)− E(N−1),

(B) εN(N−1) = εN(N),

(C) εN(N) = −I(N) ≡ E(N)− E(N−1),

which may be used to constrain a hybrid calculation by enforcing internal consis-
tency. In practice, the parameter α of the basic hybrid approach provides a single
degree of freedom and so can be used to impose (A) the LUMO-A condition or (B)
the LUMO-HOMO condition or (C) the HOMO-I condition, or generalized Koop-
mans’ theorem (GKT).

A key point regarding the hybrid approach is that the derivative discontinuity ∆ in
the xc potential not only is zero, but also should be zero. This is most clearly seen
by noting that the description of exchange and correlation in the hybrid approach
includes a reduced-strength Fock operator, essentially mimicking the screened ex-
change operator that is at the heart of the well-known GW approximation to the
self-energy operator [13, 14, 96], plus LDA exchange and correlation reduced in
strength. This identification of the hybrid approach’s ‘self-energy’ as a screened-
exchange approximation to the exact self-energy Σxc, as noted by other authors

1εN(N−1) denotes the Nth eigenvalue for the (N−1)–electron system.
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[97, 98], means that Σxc would yield exact electron addition and removal energies
through its one-electron eigenvalues that then acquire the significance of quasipar-
ticle energies. Hence in both the N and (N−1)–particle systems both the HOMO
and LUMO energies may be regarded as fairly sophisticated approximations to the
ionization potential and electron affinity, and therefore require no ∆ correction.

The hybrid functional that we use for our main tests straightforwardly mixes HF
with an LDA xc potential:

VHYB
xc (α) = αVHF

x + (1− α)VLDA
xc , (7.1)

where VHYB
xc , VLDA

xc and VHF
x denote the hybrid and LDA xc potentials 2 and the

non-local HF exchange potential, respectively. This has the advantage of focusing
more on the variational power of HF for exchange-dominated systems and accom-
modating better the cross-over between exchange and correlation when the LDA is
applied to inhomogeneous systems. We also explore the retention of the full LDA
correlation potential, mixing only the exchange terms, in common with other hybrid
functionals such as PBE0 [79]:

VHYB
xc (α) = αVHF

x + (1− α)VLDA
x + VLDA

c . (7.2)

We assess hybrid functionals (in the form of equation 7.1 unless otherwise stated) for
a range of both exchange-dominated and correlated systems. The exact many-body
wavefunction (used to compute the exact density) is obtained by direct solution of
the many-body Schrödinger equation using the iDEA code [46]. As in previous
chapters, the electrons interact via the softened Coulomb interaction and are treated
as like-spin.

2The LDA used in this work is parameterized from finite slabs [47]; our testing has shown these
give indistinguishable results compared to homogeneous electron gas (HEG)-based LDAs.
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Figure 7.2: (Upper) The variation in hybrid ionization energy I(3)(= A(2)),
exact I(3)(= A(2)), ε3(3) and ε3(2) with α are illustrated for three electrons
in an harmonic oscillator with ω = 0.25, an exchange-dominated system. En-
ergies are in Hartree atomic units. There are three ‘crossing points’: (A) A-
LUMO, (B) HOMO-LUMO and (C) I-HOMO. (Center) The integrated abso-
lute error in the density ∆ρ is shown for each value of α. This is defined as∫
|ρEXT(x) − ρHYB(x)|dx where the ρEXT and ρHYB correspond to the exact and

hybrid densities. (Lower) The densities for crossings (A) and (C) are bench-
marked against the exact, LDA and HF cases; the hybrid, HF and exact curves
lie close together.

7.3 Performance for model systems

7.3.1 Exchange-dominated systems

In figure 7.2 we demonstrate for the harmonic well with angular frequency ω = 0.25
(an exchange-dominated system) that application of any of the conditions (A)–(C)
yields an α very close to pure HF, i.e., α ≈ 1, as expected. Other exchange-dominated
systems we tested yield similarly good results from the constrained hybrid.

Conditions (A)–(C) correspond to three ‘crossing points’, as shown in figure 7.2.
Using the argument laid out previously, the self-energy should satisfy all three of
these conditions. Generally, (A)–(C) correspond to different conditions that specify
where the HOMO, LUMO and IP of a system lie with respect to one another. Al-
though it clear from figure 7.2 that the three conditions cannot be exactly satisfied,
the three crossing points lie pleasingly close together, and the density error ∆ρ (see
Figure caption) is small in their vicinity. Generally, we find that densities obtained
from α values lying between crossing points (A) and (C) are in excellent agreement
with the exact case.
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Figure 7.3: As figure 7.2, for three electrons in an atom-like external potential
(Vext (x) = −1/ (0.05|x|+ 1)). The system is correlated as HF fails to predict the
exact density and energy.

7.3.2 Correlated systems

Given that both of the underlying functionals usually fail to produce a near-exact
density in these systems, we ask: is a hybrid functional capable of reproducing a
near-exact density for any value of α? We show the results in figure 7.3 for three
electrons in an atom-like potential. Once again, all three conditions (A)–(C) produce
values of α that yield strikingly accurate densities.

Although in the exchange-dominated case crossing points (A) and (C) correspond
to an α differing by only one percent, in the correlated system we find that they
differ more (∼ 10%). Crucially, however, the density error ∆ρ corresponding to con-
dition (A) and (C) is better than 0.03. Hence, as before, each density corresponding
to these conditions is in excellent agreement with the exact. We note that condition
(A) corresponds to a slightly better density than (C), the GKT, for both this corre-
lated system and the exchange-dominated system. The alternative hybrid strategy
of mixing only the exchange potentials yields accurate, but slightly inferior densi-
ties, as shown in figure 7.4, this is due to the breaking of the cancellation of errors
between the exchange and correlation terms of the LDA.
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Figure 7.4: To be compared with figure 7.3. Three electrons in the atom-
like external potential. In this case the hybrid uses the exchange only
form of mixing. This illustrates that both forms of mixing yield similar
densities. However, we note that the (global) density error minimum is
higher when using exchange-only-mixing ( 0.05) compared to exchange-
and-correlation mixing ( 0.025), used in the main paper.

In order to verify that the curvature ∂2E/∂N2 in our functionals is indeed better
using the constrained hybrid approach, we calculate the derivative of energy with
respect to number of electrons ∂E/∂N, shown in figure 7.5 3. It can be seen that
the HF case is exact for values leading up to one–electron, however curvature is
present for anything larger. This is as expected, as the HF energy and density are
exact for one electron systems. Unlike HF, the LDA is inexact for all numbers of
electrons. The α values corresponding to conditions (A) and (C) in the atom-like
potential follow the exact line much more closely than the LDA and HF between
2 and 3 electrons, the region where conditions (A)–(C) have been imposed. This
suggests that the curvature has indeed been reduced. Comparing the curvature for
conditions (A) and (C), we see that the two are comparable to one another.

3As calculated in Reference [93]
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Figure 7.5: The derivative of energy with respect to total number of electrons
N, ∂E/∂N, for a number of approximations. The external potential and α values
chosen are the same as that of figure 7.3. We verified that the ∂E/∂N curve lies
exactly on that of the HOMO eigenvalue within each approach. Each node at
integer numbers of electrons corresponds to the HOMO and LUMO, with the
lower energy value being the HOMO.

7.3.3 The fractional dissociation problem

We now demonstrate that hybrids are capable of rectifying the fractional charge
problem common to many xc approximations for molecular dissociation. Specifi-
cally, we test a system with two separated wells where the usual DFT approxima-
tions inaccurately predict the amount of charge present in each well. Figure 7.6
demonstrates that, when compared with the exact case, the constrained hybrid ap-
proach and HF yield near-exact densities. In addition, we show that even for a small
fraction of exact exchange (α = 0.200), the correct charge in each well is obtained,
and hence a large range of values of α yield accurate densities. However, the density
has an incorrect shape within each well when an α not corresponding to conditions
(A)–(C) is used 4. This large range of α values that yield a highly accurate density
shows the advantage of the nearsightedness of the exact-exchange operator present
in the hybrid Hamiltonian.

4We anticipate than bonded open-shell atoms would constrain α more closely.
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Figure 7.6: (Upper) Densities for various approximations are shown for an
exchange-dominated asymmetric double-well potential. The dashed line, illus-
trating the potential (scaled by 0.15), shows that the two wells are asymmetric.
The HF case follows the exact one, placing one electron in each well of a strongly
localized system. The LDA predicts that an additional 0.1 electrons are present
in the deeper well. The GKT yields α ≈ 1, effectively HF. We show the den-
sity for α = 0.2, which places the correct charge in each well, but has an incor-
rect density shape. (Lower) The integrated charge of the left (shallower) well is
shown for a range of α values.

7.3.4 Accuracy of quasiparticle energies

We now show in Table 7.1 that the accuracy of hybrid functionals for densities is
not at the expense of energies. Of particular interest is the quasiparticle energy gap
(I − A), which the LDA and HF usually under- and over-estimate, respectively, as
well as the values of I and A individually. This establishes contact with the perfor-
mance of Koopmans-compliant hybrids in 3D systems [86, 96, 99] and suggests that
useful quasiparticle energies can be extracted from functionals which also produce
an accurate density. The tendency of constrained hybrids to reduce these energy
gaps from HF to near-exact levels further supports the idea that this approach is
similar to a screened-exchange method.
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Table 7.1: The quasiparticle gap of two-electron systems as extracted
from the LDA, HF and hybrid5 HOMO-LUMO eigenvalue differences,
compared to the exact gap calculated from many-body total energies.
Gaps are compared for the exchange-dominated (harmonic) and corre-
lated (atom-like) systems. The two-electron IPs are shown for the same
systems.

(a.u.) LDA HF Hybrid Exact
Quasiparticle gaps

Harmonic 0.222 0.491 0.472 0.469
% error 53% 5% 1% –
Atom-like 0.037 0.172 0.152 0.141
% error 74% 22% 8% –

Ionization potentials
Harmonic -0.761 -0.620 -0.629 -0.628
% error 21.2% 1.3% 0.2% –
Atom-like 0.551 0.620 0.608 0.612
% error 9.9% 1.4% 0.5% –

7.4 Summary

Through direct comparison of solutions to the exact many-body Schrödinger equa-
tion, we have shown that hybrid functionals yield accurate densities and quasiparti-
cle energy gaps in both exchange-dominated and correlated systems, if the fraction
of exact exchange, α, is chosen using physically justified constraints, such as the
generalized Koopmans’ theorem. Particularly accurate densities are obtained from
a hybrid strategy that mixes LDA correlation, as well as LDA exchange. The three
studied constraints are all in close agreement with one another and all yield accu-
rate densities and gaps. In double-well systems, we find that hybrid functionals per-
form well and are free from the fractional dissociation problem for a large α range.
Once the accuracy and reliability were confirmed in this study, hybrids of this type
were successfully applied to model the formation of polarons in TiO2 [100]. A key
perspective is the interpretation of a hybrid method as a simple screened-exchange
approximation within many-body perturbation theory, which brings with it the ben-
efits of nearsightedness as described in Chapter 6.
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Chapter 8

Time-dependent densities from
many-body perturbation theory

Common approximations to the exchange-correlation (xc) potential within time-
dependent density functional theory (TDDFT), such as the adiabatic local density
approximation (LDA) yield extremely poor electrical properties when applied to
systems driven by electric fields, predicting largely incorrect currents [12]. In order
to systematically improve upon such methods, we must investigate the nature of
such failings by considering the erroneous features in the predicted time-dependent
densities. The approach we take is to compute the exact real-time evolving density
for a series of systems that exhibit the characteristic physical phenomena of atoms
being driven by electric fields, this includes strong electron interaction effects. We
show that the adiabatic LDA, as expected, yields very poor time-dependent den-
sities for such systems. Many-body perturbation theory (MBPT), in particular the
Hartree-Fock (HF) and the GW approximation, is successfully used to calculate the
ground-state properties of materials as well as the spectral function [14, 101], yet is
more rarely used for real-time evolution of the electron density owing to the com-
putational cost. The most significant contribution to this computational cost is the
requirement to explicitly store the two-point quantities required for non-equilibrium
Green’s function approaches, such as the propagation of the Kadanoff-Baym equa-
tions [36, 38, 37, 39].

In this chapter we investigate a significantly cheaper and simpler form of time-
dependent many-body perturbation theory (MBPT), using both the HF and GW
approximations to the self-energy. This is motivated by the accurate account of
strongly localized electrons captured by the exact-exchange operator as illustrated
in chapter 6, and the accurate modeling of ground-state correlation of the inertial
flavor of the GW approximation as presented in chapter 4. We show the quality of
real-time evolving densities produced by such methods greatly improves upon the
adiabatic LDA for our set of challenging model systems.
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8.1 Introduction

Time-dependent density functional theory (TDDFT) is in principle a powerful
method for simulating dynamic properties of matter. It is commonly used within
chemistry to calculate the optical absorption spectra. However, existing approxi-
mations to its exchange-correlation (xc) potential are unreliable in the presence of
strong currents. Within the Kohn-Sham (KS) approach, TDDFT employs an auxil-
iary system of non-interacting electrons subject to the effective time-dependent KS
potential, VKS[n](x, t), which yields the exact many-electron time-dependent elec-
tron density. The KS potential is usually split into the external potential of the many-
electron system, the Hartree potential, and the exchange-correlation (xc) potential,
Vxc[n](x, t). In practice the xc potential must be approximated. The most common
approximation is the adiabatic LDA, which has a local and adiabatic dependence on
the density which completely neglects important memory effects.

We assess the accuracy of the time-dependent electron density yielded from MBPT,
and the adiabatic LDA within TDDFT, by comparing to the exact many-electron
density. We construct simple one-dimensional model nanostructures consisting of 2
electrons whose time-dependent many-body wavefunction, and hence
time-dependent density, can be computed exactly using the iDEA code. We con-
struct several model systems that each capture the physical phenomena present in
molecular junctions, such as correlated electrons within an atom being driven by an
external electric field. These systems are designed to exhibit dynamic exchange and
correlation effects in order to fully test the ability of each approximation. For this set
of systems we compare the exact time-dependent density to those computed by the
adiabatic LDA of TDDFT and time-dependent Hartree-Fock (TDHF). In addition,
we assess the accuracy of a novel method of TDGW, by using our static model of
screening – inertial screening – to screen the exchange potential within TDGW.

We also test the performance of these approximations for a particularly challeng-
ing system in which correlation increases over time: two electrons colliding in an
atom. Dynamic correlation effects of this type are extremely difficult for adiabatic
approximations with TDDFT. We show that the MBPT approaches yield more accu-
rate densities owing to the spatially non-local potential.

8.2 Time-dependent many-body perturbation theory

The time-dependent density within TDHF can be calculated from the occupied or-
bitals obtained by solving(
−1

2
∂2

∂x2 + Vext(x, t) + VH(x, t)
)

φi(x, t)+∫
Σx(x, x′, t)φi(x′, t)dx′ = i

∂

∂t
φi(x, t), (8.1)

where VH(x, t) is the Hartree potential, Σx(x, x′, t) is the Fock operator and Vext(x, t)
is the external potential which includes the perturbation. The flow chart in Figure
8.1 (black arrows only) details how the TDHF orbitals are propagated through time.

We now propose screening the exchange potential in order to take account of cor-
relation while maintaining the propagation of single-particle orbitals. We first con-
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Figure 8.1: Flow chart depicting the TDHF method (black arrows only).
The Hamiltonian H is used to evolve the TDHF orbitals over a time-
step ∆t using the Crank-Nicholson method. In addition to the single-
particle kinetic energy and the external and perturbing potentials, H is
constructed from the Hartree, VH, and exchange, Σx, potentials. We then
modify this approach to approximately take account of correlation using
our proposed TDGW method (additional blue arrows). The correlation
potential Σc is computed from a statically screened Coulomb interaction
W which also depends on the unoccupied orbitals via our static approxi-
mation to the polarizability P.

sider the usual approximation to P; the RPA. As discussed in Chapter 4 this approx-
imation neglects the electron-hole interactions. If we used this dynamic P to screen
the exchange potential we could not evolve the wavefunctions in the same way as
in the TDHF case, as the self-energy would become non-Hermitian. One viable al-
ternative is to use an energy-independent self energy. An example of which is the
Coulomb-hole-screened-exchange (COHSEX) approximation

PCOHSEX(x, x′) = PRPA(x, x′, iω = 0). (8.2)

An alternative method which in Chapter 4 was shown to yield more accurate ground-
state densities is inertial screening, which is described by

Pinertial(x, x′) = PRPA(x, x′, it = 0). (8.3)

As well as its increased accuracy, inertial screening is advantageous as P only de-
pends on the single-particle orbitals and not energies. Written in terms of the or-
bitals the inertial polarizability is given by

Pinertial(x, x′) = −
(

occ

∑
k

φk(x)φ∗k (x′)

)(
unocc

∑
k

φk(x′)φ∗k (x)

)
, (8.4)

without needing to compute the full many-body Green’s function. This then al-
lows us to compute the screened Coulomb interaction by solving a single Dyson-like
equation

W(x, x′) = v(x, x′) +
∫

v(x, x′)P(x, x′′)W(x′′, x′)dx′′. (8.5)

and from this at each timestep we can compute an approximate correlation potential

Σinertial
c = −

occ

∑
k

φk(x, t)φ∗k (x′, t)
(
W(x, x′)− v(x, x′)

)
; (8.6)

This is then included in the Hamiltonian H, which can be used to propagate the
single-particle orbitals as shown in Figure 8.1 (additional blue arrows).
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8.3 Perturbing an atom with an electric field

In this next section we will look at applying our various approximate methods to a
series of systems designed to exhibit the physical characteristics of several key parts
of a molecular junction, and comparing the time-dependent density in each case to
the exact. In each case we begin by computing the ground-state density, and then
we turn on a uniform electric field at t = 0 of the form

Vperturb(x) = −0.01x (8.7)

that causes a current to begin to build up as the electrons are driven out of their
ground state.

We begin with a single atom, containing two electrons. In figure 8.2 we show the per-
formance of each of our approximations at reproducing the exact time-dependent
density. In panel (a) we show the ground-state density of our system and in panel
(b) we show the time-dependent density at 100 atomic units of time after the electric
field was turned on1. We find the expected result that the adiabatic LDA is very
poor for this system due to significant correlation. Both it’s ground state and time
dependent density exhibit a largely incorrect shape. TDHF on the other hand is
substantially more accurate over all times. It still does not have the correct den-
sity profile in the central highly delocalized region of the system. TDGW performs
much better than TDHF for this correlated system until very large times, in order to
extend the method to even larger times, vertex corrections could be included in the
static P and also Σ.

1The propagation algorithm was tested for numerical stability for these long simulation times by
verifying the harmonic potential theorem is obeyed by a comparable harmonic oscillator.
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Figure 8.2: Exact and approximate ground-state and time-dependent
densities for two like-spin electrons in a 1D correlated atom responding
to an electric field. (a) The exact ground-state density for this system com-
pared to approximate methods. The LDA yields a very poor density for
this system giving a large spurious bump in the centre of the system, and
a incorrect decay rate far towards the edges. Hartree-Fock (HF) performs
much better than the LDA, yielding a much more accurate decay rate,
but exhibiting a largely incorrect shape in the highly delocalized central
region. It is this noteworthy difference between the exact and HF densi-
ties that shows the significant effect of correlation in this system. Finally,
the static GW density is the most accurate method, yielding a marked
improvement over the HF density. (b) Here we show the exact and ap-
proximate time-dependent density of this system at 100 atomic units of
time after the electric field is applied, the electrons have been driven to-
ward the right side of the well. The relative performance of each of the
method remains much the same as in the ground-state case. (c) Here we
show the error in the density for each of our approximate methods as
a function of time. The time-dependent MBPT methods perform much
better than the adiabatic LDA. The TDGW method outperforms TDHF
for most of the evolution, as correlation is approximately accounted for.
We see that this approximation begins to break down towards the larger
times, although is still a large improvement upon the adiabatic LDA.
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In figure 8.3 we show the exchange and correlation parts of the TDGW self energy
for this system at t = 100. The upper left panel shows the real part of the exchange
potential Σx and the lower right panel shows the real part of the correlation poten-
tial Σc. The correlation potential acts to screen the exchange potential by a factor
of approximately 5.3%. The right panels show the corresponding imaginary parts,
which is due to the time-dependent orbitals used to construct the potentials being
complex valued2.

'
'

Figure 8.3: The time-dependent self-energy of the TDGW method for the
two like-spin electrons in a 1D correlated atom responding to an electric
field at t = 100 (densities shown in figure 8.2 (b)). The left panels show
the real parts of both the exchange potential Σx (upper left) and correla-
tion potential Σc (lower left). The correlation potential acts to non-locally
screen the exchange potential. On the right panels we see the imaginary
part of both potentials. These arise from the fact the orbitals used to con-
struct the potentials are complex in the time-dependent case.

8.4 Electron collisions

Next we test our approximations for a particularly challenging system that is de-
signed to have significant time-varying correlation. In particular a system that is
initially well described by HF, whose driving perturbation causes a rapid increase
in correlation. The system we choose is the collision of two electrons in an atom.
We have established that the atom potential yields a correlated ground-state den-
sity in figure 8.2(a), and so we want to consider two electron being dropped into
this atomic well from each side, causing the electrons to collide in the center. To
achieve this effect we begin with the initial potential Vatom + Vbump (see figure 8.4),
where the bump is designed to hold the electrons away from the center of the sys-
tem, one on the left and one on the right. For this potential the HF ground-state

2It is worth noting that these potentials are still Hermitian and conserve the orthonormality of the
orbitals
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density is extremely accurate (see figure 8.5(a)). At t = 0 we perturb the system by
removing the bump (adding −Vbump to the initial potential), and so the electrons
begin to accelerate towards the center of the system and collide. We then follow
the time-evolution long enough to see the initial collision, although in principle the
time-evolution could be continued to see the emergence of an equilibrium state at
long times.

Figure 8.4: The potentials used to simulate two electrons colliding in a
atom. Initially the potential is given by Vatom + Vbump, where the central
bump is designed to hold both of the electrons out of the centre of the
atom. At t = 0 we apply a perturbation that acts to remove the bump,
giving the final potential just to be Vatom. This then causes the electrons
to respond by falling into the centre of the well and colliding, creating
very dynamic correlation effects.

In figure 8.5 we show the performance of each of our approximations at reproducing
the exact time-dependent density for this system. In panel (a) we show the ground-
state density of our system and in panel (b) we show the time-dependent density
at 100 atomic units of time after the bump is removed. We see that the HF ground-
state density is, by design, essentially exact. The inertial GW density is slightly
worse, which is most likely due to the self-screening error, which could be corrected
by the inclusion of vertex corrections in the self-energy3. The LDA yields a poorer
density with the wrong sizes of the peaks. In panel (b) we show the density 100
atomic units of time after the central bump is removed, allowing the electrons to
collide with each other in the centre of the atomic well. The TDGW method is the
most accurate, yielding a relatively accurate shape of the density, in comparison to
TDHF and adiabatic LDA, which both predict far too much charge in the centre of
the system. In panel (c) we show the error in the density for each of our approximate
methods as a function of time. The time-dependent MBPT methods perform much
better than the adiabatic LDA. TDFT begins by outperforming TDGW but at the cor-
relation begins to increase over time TDGW begins to become a larger improvement
over TDHF.

3Such as our local self-screening correction developed in Chapter 5.
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(a)

(b)

(c)

Figure 8.5: Exact and approximate ground-state and time-dependent
densities for two like-spin electrons colliding 1D correlated atom. (a)
The exact ground-state density for this system compared to approxi-
mate methods. By design, Hartree-Fock (HF) performs very well for the
ground-state of this system, as there is little overlap between the orbitals
as they are held away from the centre of the system by the bump (as
shown in figure 8.4). The inertial GW method performs slightly worse,
this is likely due to the self-screening error, which could be corrected
by our local vertex correlation. The LDA yields a much poorer den-
sity, although it has the correct characteristic shape, just with the wrong
sizes of the peaks. (b) Here we show the exact and approximate time-
dependent density of this system at 100 atomic units of time after the
bump is removed. As the electrons collide together the exact density be-
comes extremely dynamic (see supplemental material for full animation
of time-dependence). At this large time after the perturbation the TD-
MBPT methods slightly outperform the adiabatic LDA, with the TDGW
yielding a qualitatively better density than TDHF. (c) Here we show the
error in the density for each of our approximate methods as a function of
time. The time-dependent MBPT methods perform better than the adia-
batic LDA in particular for the qualitative shape of the density.
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8.5 Summary

In this chapter we have presented a simplified form of time-dependent many-body
perturbation theory that is able to give time-dependent densities that are signifi-
cantly more accurate than conventional TDDFT approaches and substantially cheaper
than non-equilibrium Green’s function methods. We combine the simplicity of prop-
agating single-particle orbitals, with the nearsighted non-local exact exchange po-
tential, and a simple yet effective approximation to the static correlation potential.
For challenging test systems these approaches yield promisingly accurate densities,
and show further potential to be systematically improved via the inclusion of dy-
namic correlation effects and vertex terms in the self-energy.

112



Chapter 9

Conclusions

Accurate modeling of electron correlation is crucial to investigating and under-
standing many quantum systems that are integral to quantum technologies, such as
molecular junctions. There are many approaches to this problem, such as ground-
state and time-dependent density functional theory (DFT), and many-body pertur-
bation theory (MBPT). In key systems that exhibit significant static and dynamic cor-
relation, the ability of such methods to yield accurate results varies tremendously. A
systematic understanding of the strengths and weaknesses of these methods is key
to overcoming their limitations, and formulating improvements.

The approach we took in this thesis was to construct a set of model systems inspired
by challenging large-scale systems, that are sufficiently simple such that the key
quantities can be determined exactly by efficient numerical solution to the many-
body Schrödinger equation. We compare these quantities to those predicted by com-
monly used methods in order to gain an understanding of the underlying causes
of their merits and shortcomings. Once we attained a sufficient understanding of
the reason why the common methods break down, we develop corrections and im-
provements. We then show, in our model systems, what advancements have been
made over the usual methods, and what further limitations are yet to be remedied.
We adopt the pragmatic view that these improvements should be computationally
simple enough to be applied to large-scale problems.

We demonstrated that the accuracy of densities predicted by the GW approxima-
tion vary considerably depending on the flavour used. We showed that a pervasive
systematic error that leads to substantial inaccuracy in the prediction of both the
density and ionisation potential is the self-screening error, particularly in the most
sophisticated fully self-consistent case. Following in-depth analysis of this error,
we constructed a vertex correction in the form of a simple, computationally inex-
pensive, local density functional. When applied to our test systems this correction
eliminated the unwanted effects of the self-screening error. It is hoped that in the
future this correction can be implemented in large-scale codes and applied to sys-
tems consisting of many atoms and molecules. We show that further improvements
beyond this correction are needed in order to accurately predict the density of par-
ticularly delocalized electrons, where electron-hole interactions must be accounted
for.

We illustrated that many-body perturbation theory methods, such as Hartree-Fock
and the GW approximation exhibit Kohn’s concept of nearsightedness, unlike Kohn-
Sham density functional theory. This means that the potential describing one sub-
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system need not contain features to account for the presence of neighboring subsys-
tems. This is due to the spatial non-locality of the potentials of MBPT, which we
show need not contain the pathological features required in the spatially local ex-
act Kohn-Sham potential, which are beyond most commonly used DFT approxima-
tions. Hence, advanced approximations which employ a non-local potential more
easily encapsulate advanced aspects of exchange and correlation. One such method
that builds upon the non-local exact exchange potential is hybrid functionals. We
demonstrate that these hybrid functionals, when the fraction of exact exchange is
chosen using physically justified constraints, yield extremely accurate densities. A
further investigation will determine to what extent this concept can be applied to
extended systems.

Finally, we apply our approach to the improvement of methods to compute time
dependent densities. We use a form of time-dependent many-body perturbation
theory that employs the propagation of single-particle orbitals, as in the TDDFT
case, but with non-local potentials describing the exchange and correlation effects.
We show that these methods significantly outperform the adiabatic LDA, yield-
ing much more accurate time-dependent densities, but without the more onerous
computational cost of non-equilibrium Green’s function methods. Our presented
method can in principle be systematically improved via the application of more ad-
vanced approximations to the non-local potential, such as the inclusion of vertex
corrections.
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