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The one-body reduced density matrix (1-RDM) of a many-body system at zero

temperature gives direct access to many observables, such as the charge density,

kinetic energy and occupation numbers. It would be desirable to express it as a simple

functional of the density or of other local observables, but to date satisfactory

approximations have not yet been found. Deep learning is the state of the art approach

to performing high dimensional regressions and classification tasks, and is becoming

widely used in the condensed matter community to develop increasingly accurate

density functionals. Autoencoders are deep learning models that perform efficient

dimensionality reduction, allowing the distillation of data to the fundamental features

needed to represent it. By training autoencoders on a large data-set of 1-RDMs from

exactly solvable real-space model systems, and performing principal component

analysis, the machine learns to what extent the data can be compressed and hence

how it is constrained. We gain insight into these machine learned constraints and

employ them to inform approximations to the 1-RDM as a functional of the charge

density. We exploit known physical properties of the 1-RDM in the simplest possible

cases to perform feature engineering, where we inform the structure of the models

from known mathematical relations, allowing us to integrate existing understanding into

the machine learning methods. By comparing various deep learning approaches we

gain insight into what physical features of the density matrix are most amenable to

machine learning, utilising both known and learned characteristics.
1 Background and objectives

The development of modern technology is driven by our understanding of the
behavior of systems at the quantum mechanical level. Theory and numerical
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calculations play an important role in the development of this understanding.
However, real materials consist of interacting particles, which gives rise to the vastly
unfavourable computational and memory scaling required to solve the underlying
equations. If we could solve themany-body Schrödinger equation for the ground-state
wavefunction and store such an object, observables could be calculated as expecta-
tion values, but this is not possible for systems of interest. The Hohenberg–Kohn
theorems within density functional theory (DFT) tell us that we can instead describe
any observable in terms of the much more manageable electron density,1 but the
form of almost all such functionals is unknown.

The one-body reduced density matrix (1-RDM) can be thought of as an inter-
mediate quantity between these two extremes. As with the density, it avoids the
problem of having to store a function of all the spin and spacial coordinates of the
system. For an N-electron spin-resolved system at zero temperature the 1-RDM is
given by

g
�
r; r

0
�
¼ N

ð
Jðr; r2; r3;.ÞJ*

�
r
0
; r2; r3;.

�
dr2dr3.: (1)

Its diagonal is the charge density n(r) ¼ g(r, r). The expectation value of any
local or non-local one-body operator in terms of the density matrix is

O½g� ¼
ð
O
�
r; r

0
�
g
�
r; r

0
�
drdr

0
: (2)

In particular, the kinetic energy K of the many-body system reads

K ½g� ¼ � ħ2

2m

ð
V2g

�
r; r

0
����

r¼r
0 dr

0
: (3)

While reduced density matrix functional theory (RDMFT)2–12 performs a con-
strained minimisation of the total energy E over the 1-RDM, it would be possible to
perform the minimisation over the density itself if we could express the 1-RDM as
a functional of the density. This would allow for direct minimisation of the energy
within DFT without the need for a Kohn–Sham (KS) auxiliary system,13 which intro-
duces orbitals.14 Therefore it would be highly desirable to nd the functional g[n], as
this would allow these key quantities to be themselves expressed as functionals of the
charge density. The search for such a functional does not have to be completely blind.
In particular, the density matrix is an object that is subject to many constraints.2 Not
all functions f(r, r0) are valid density matrices, in the sense that they can be computed
from the ground-state wavefunction of a Hamiltonian with a local and static poten-
tial. Knowledge of the constraints is crucial when building functionals, as it
considerably reduces the domain of legitimate functionals one must search over.15

In the data science community, there is an exponential growth of modernmachine
learning methods, that each day are being applied to successfully solve increasingly
difficult problems with astonishing accuracy. Such problems were previously thought
to be impossible to solve numerically, in particular in the eld of image processing. As
the 1-RDM stored on a numerical grid is essentially an image, with a dominant spacial
structure, the question naturally arises: can these methods be used to gain new
insights into the 1-RDM and help us nd the functional we desire?
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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Machine learning is becoming increasingly utilised in the eld of condensed
matter physics.16–34 In particular, machine learning has been shown to yield
impressive results for the computation of the exchange–correlation potential
within DFT. In a recent study,35 small exactly solvable molecules are used to train
a machine learning model for the exchange–correlation potential. The authors
demonstrate that this can then be used to predict the properties of more complex
molecules. This exploits the holographic density principal of molecules,36 which
suggests that the behaviour at a given part of a large molecule (for example
a bond) is also present in a small molecule. Machine learning is also widely uti-
lised within condensed matter physics, and has been shown to be able to perform
the Hohenberg–Kohn mapping from the external potential to the charge density
directly using kernel ridge regression.37

We wish to augment machine learning models with our current approaches,
such that only the smallest possible parts, which are the most difficult to
approximate, have to be learned. This raises three fundamental questions: can
machine learning give insights into the 1-RDM, within particular constraints?
Can machine learning algorithms optimised for image processing learn the
functional g[n], and can we integrate this with pre-existing physically-based
models so we need only learn the neglected phenomena, and if so which part is
the most amenable to machine learning?
2 Machine learning methods

Deep learning is a powerful method within machine learning that is used to
perform very high dimensional and extremely non-linear tting using a large
data-set on powerful hardware. We now introduce the deep learningmethods that
we utilise to answer our proposed questions, and how in particular they relate to
physical problems faced in quantum chemistry.
2.1 Deep neural networks

Deep neural networks are numerical models that are trained to recognise patterns
and relationships between data. For our purposes we will use them to perform
generalised regression. If we have a labeled data-set of known inputs {x} and
known outputs {y}, a deep neural network can learn any non-linear map f: x / y
that can make predictions on novel x values. This is learned through the process
of gradient descent, where the parameters of the network are adjusted to mini-
mise the error of predictions made on known data. With proper structuring, the
inputs and outputs can be of any form: images, functions, numerical values etc.,
and a model with enough complexity can learn any arbitrarily non-linear
mapping.

The simplest type of neural network we will utilise is the multilayer perceptron
(MLP),38 illustrated in Fig. 1. A MLP is composed of layers of perceptrons, each
holding one value, computed as a weighted linear sum of its inputs {x} passed

through some non-linear activation function s : s

�P
i
wixi þ b

�
; where {w} are the

weights of the layers and b is the perceptron’s bias. It is the many layers of these
perceptrons, each a non-linear combination of all the perceptrons in the previous
layer, that allows the network to learn highly intricate relationships. During
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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Fig. 1 An illustration of a multilayer perceptron (MLP).39 The circles represent the layers of
perceptrons, which are fully connected between layers. The red and blue lines represent
the values of the weights of each layer (one set of {wi} for each perceptron), where blue
indicates a positive weight, and red a negative weight. Each perceptron also has a bias
b that is not shown. It is these weights and biases that are adjusted during the training via
gradient descent. The middle two layers are termed hidden layers as they are not directly
connected to the inputs or outputs. With a sufficient number of perceptrons in the hidden
layers, this network can in principal learn any arbitrarily complex mapping from the 8 input
values to the 1 output value y1 ¼ f(x1, x2, ., x8).
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training the weights and biases are adjusted through gradient descent, aer being
randomly initialised, until the error with respect to the known data is minimised.
2.2 Autoencoders

Autoencoders (AEs) are deep neural networks that are trained to perform efficient
generalised data compression.40 They consist of a neural network that is trained to
reproduce exactly its own input data as output data fAE: x / x. A single hidden
layer acts as a bottleneck, containing fewer perceptrons than in the input and
output layers, compressing the data to a latent space. The two parts of the
autoencoder can be separated into the encoder fE: x / x0 and decoder fD: x0 / x,
where x0 has a smaller dimensionality then x.

The extent to which data can be compressed depends on its features. For example,
images of only faces can be compressed signicantly more than general images, as
they are more heavily constrained. Therefore the use of AEs can be thought of as
domain-specic data compression, as the network learns the underlying features of
a specic data-set (domain), and so learns to exploit these in order to achieve a greater
degree of compression. In general, there is a deep connection between compression
and constraints: the more data is constrained, the more it can be compressed loss-
lessly. We propose training an autoencoder on the 1-RDM in order to inform: to what
extent it can be compressed, the nature of the compression, and how one can extract
these constraints. In particular, we would hope the AE would learn that the 1-RDM
g(r, r0) can be compressed to a latent space of the dimensionality of its diagonal n(r).

In principle we could use a MLP with a bottleneck layer as our deep autoen-
coder. However, this would be onerously expensive and inefficient; for the same
reasons MLPs are rarely used for image processing: they do not exploit the spacial
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Illustration of a convolutional autoencoder (CAE).39 The 2 dimensional input image
is convolved with kernels reducing the spacial dimensions and increasing the number of
features until the data is totally reduced to a feature latent space with far fewer degrees of
freedom that the original image. This compression can be achieved as the image contains
some intrinsic structure, as opposed to totally random pixel values. This process is then
inverted with transpose convolutional layers until the original image dimension is recov-
ered. This network is trained by adjusting the kernels through gradient descent until the
output image reproduces the input image to a given tolerance over the training data-set.

Paper Faraday Discussions
Pu

bl
is

he
d 

on
 1

2 
Ju

ne
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Y
or

k 
on

 9
/1

8/
20

20
 1

0:
27

:5
8 

A
M

. 
View Article Online
structure, treating each pixel of data totally independently from the rest. Instead,
density matrices do have strong spacial structure: for example, for the most common
external potentials they are continuous and smooth. Therefore, we utilise convolu-
tional autoencoders (CAEs) to learn the constraints of the 1-RDM. CAEs convolve
several kernels over the two dimensional input image using element wise multipli-
cation.41,42 These values are then passed to some non-linear activation function s. This
can be thought of as ‘scanning’ over the image with a lter representing a particular
feature. The resultant values describe the similarity between a region of the image and
the feature of interest. It is this that exploits the spacial structure of the image. This
process is repeated until the spacial information of the image has been converted from
real space to a 1-dimensional feature space. This is our bottleneck layer. This process is
then reversed using transpose convolution layers (that perform the inverse operation)
until the image is recovered. This is illustrated in Fig. 2. It is the kernels of this network
that are adjusted throughout training, until the input image can be reconstructed as
the output to a required tolerance over the data-set. This then allows us to learn
arbitrarily non-linear constraints of the 1-RDM, and nd a latent feature space where
the 1-RDM as a functional of the density may be simpler. We employ CAEs to learn
constraints and develop approximate functionals for the 1-RDM on a large data set.
2.3 Principal component analysis

The simplest autoencoder we can imagine is dimensional reduction via principal
component analysis (PCA).43 PCA consists of computing the linear transform to an
orthogonal space that is designed such that each component is ordered by its
variance.44 This is illustrated in Fig. 3. If the variance of a given component is zero,
that component can be neglected such that the original data is recovered exactly
upon the inverse transformation. Good approximations are obtained when
components whose variance is small are neglected. It is important to note that
PCA is a strictly linear transformation, and so can only determine linear
constraints in data (in contrast to CAEs).

We will now introduce how PCA is performed on a data-set consisting of T N �
N matrices. We begin by considering element t of our data-set:

gðtÞ ¼
24g

ðtÞ
N1 / g

ðtÞ
NN

« ⋱ «

g
ðtÞ
11 . g

ðtÞ
1N

35˛ℝN�N : (4)
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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Fig. 3 A simple illustration of principal component analysis (PCA). The blue dots show
a set of paired data points {(xi, yi)}. The PCA applied to this data yields an orthonormal basis
shown by the two black arrows. They are ordered by their variance, with principal
component 1 (PC1) being the component with most variation. If we then use this to
perform a lossy compression, we simply discard principal component 2 (PC2) and perform
the inverse transform, yielding the reduced data points shown in green.
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In order to represent this matrix, it is possible to dene a N2-dimensional basis,
each component of which points to a different entry of the matrix

Be ¼
n���erEoN2

r¼1
¼
n���er½i;j�EoN

i;j¼1

This basis leads to the ‘attened’ version of the original matrix, represented as the
following vector: ���gðtÞ

E
¼
XN
i;j¼1

D
er½ij�
���gðtÞ

E
$
���er½ij�E ¼

XN
i;j¼1

g
ðtÞ
ij

���er½ij�E (5)

or, also

gðtÞ ¼ �gðtÞ
11g

ðtÞ
12.g

ðtÞ
NN

�
˛ℝN2

: (6)

Our data-set of T such vectors is then denoted:

G ¼
24 gð1Þ

«
gðTÞ

35 (7)

The disposal of this data-set allows us to dene a new basis with which it is
possible to describe the g-vectors. PCA is then considered as a linear numerical
method to determine the following two sets of quantities:

� |g0i: The mean matrix. The knowledge of this allows writing each matrix
under analysis in terms of its variations from the mean |gi ¼ |g0i + |~gi. This is
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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termed themean-adjustedmatrix. Themeanmatrix components in the previously
dened basis read

ðg0Þij ¼
1

T

XT
t¼1

g
ðtÞ
ij :

�Bpca ¼ f|piigN
2

i¼1: A new basis, corresponding to the principal components (or
principal directions). They are the normalized eigenvectors of the covariance
matrix

C ¼ 1

T � 1
G†G ¼

XN2

r;r
0 ¼1

cr;r0
���erEDer0 ���

cr;r0 ¼
1

T � 1

XT
t¼1

	
gðtÞ
r � ðg0Þr


�
g
ðtÞ
r
0 � ðg0Þr0

�
:

The eigenvalues of such a matrix are termed the variances fsi2gN
2

i¼1. The principal
components are the directions along which, in the data-points, there are the most
informative variations with respect to the average matrix (see Fig. 3). They are sorted
by importance depending on the value of the associated eigenvalue.

The knowledge of the data-set in this form implies that, by solving the eige-
nequation, one can determine the coefficients her|pii in the expansion���piE ¼

XN2

r¼1

D
er

���piE���erE: (8)

Each 1-RDM can be expressed in this new basis in an expansion called principal
components decomposition:���gE ¼

���g0

E
þ
XN2

i¼1

D
pi

���~gE$���piE: (9)

Themain property of PCA is that the existence of linear constraints in between the
features of the object under analysis (entries of the matrix) leads to vanishing
eigenvalues, associated with non-informative principal components. This allows
compression of the information by using a number of components n < N2. For
example, if the matrix is symmetric g(t)

i,j ¼ g(t)
j,i ct, the data can be compressed to

n#
NðN þ 1Þ

2
, and the matrix can be fully represented using a reduced number of

principal components ���gE ¼
���g0

E
þ
Xn
i¼1

D
pi

���~gE$���piE: (10)

3 The data-set

In order to investigate to what extent deep learning can answer our questions of
interest, we construct a large training and testing data-set of external potentials,
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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charge densities and 1-RDMs. To generate the data-set we use the iDEA code.45,46

This exactly solves the many-body Schrödinger equation for nite systems of up to
four electrons interacting via a soened Coulomb interaction on a one-
dimensional real-space grid given any arbitrary local external potential. In addi-
tion, it provides implementations of many widely-used approximate methods.47

Aer computing the exact many-body wavefunction, any required observables can
be obtained via expectation values directly. The solution of model systems by the
iDEA code has in the past been used to develop improved approximations to
DFT48,49 and many-body perturbation theory,50 as well as for investigating the
nature of exact potentials,51 where the model systems have been shown to well
describe crucial features such as those of real three-dimensional molecules.52

The training data is composed of a large family of randomly generated two-
electron systems in their spin-resolved ground-state. For each system we
construct a randomly generated smooth potential V(x) for which we determine the
exact ground-state many-body wavefunction.† From this we compute the charge
density n(x) and 1-RDM g(x, x0). We also, for the same potential, compute the
charge density and 1-RDM using purely non-interacting electrons (NON) and
unrestricted Hartree–Fock (UHF). As these are nite systems in the ground state,
the 1-RDMs are real-valued functions. We dene the external potential as a sum of
randomly distributed Fourier components within a large conning potential:53

VðxÞ ¼ Dx10 þ F
XM
n¼1

�
an cos

�npx
L

�
þ bn sin

�npx
L

��
; (11)

where L ¼ 15 a.u.‡ is the width of the system, M ¼ 3 is the number of Fourier
terms, D ¼ 10�11 is the damping factor of conning terms and F ¼ 0.1 is the
damping factor of Fourier terms. an and bn are generated randomly with

a uniform distribution from �2L
3

to
2L
3
. We generated a data-set of 50 000 systems

for 2, 3, 4, 6, and 62 grid points.
Fig. 4 shows the rst ve elements of the 50 000 test systems in the data-set

with 62 grid points. The systems display a wide range of potentials, densities
and 1-RDMs, exhibiting a wide range of localisation and correlation. We use this
data-set to train and test our deep learning models.

4 Learning constraints
4.1 Constraints of the charge density

We will now investigate to what extent the machine can learn fundamental
principles. Not all functions of two variables f(x, x0) are 1-RDMs due to their
constraints, and so we now investigate to what extent the machine can learn such
constraints. To begin we will focus on the simplest example possible. We will use
the data-set of only 2 points, as it makes it possible to visualise and quantify all
the relationships between the data. We will rst see if we can use PCA to learn the
known constraints of the charge density. As the space only contains 2 points, the
density is represented by 2 values n1 ¼ n(x1), n2 ¼ n(x2). The following are two
known constraints:
† Thus also ensuring all density matrices are v-representable by construction.

‡ Hartree atomic units: me ¼ ħ ¼ e ¼ 4p30 ¼ 1.

Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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Fig. 4 The first 5 elements of the 50 000 systems in the data-set. Row 1 shows the
randomly generated (as defined by eqn (11)) external potential V(x), the interacting charge
density n(x), and the purely non-interacting charge density nNON(x). These potentials give
rise to a wide range of density shapes, locations and overlaps. Row 2 shows the exact 1-
RDM g(x, x0) for each of the systems, where the dotted lines indicate the diagonal x ¼ x0.
This can be contrasted with row 3, showing the purely non-interacting 1-RDM gNON(x, x0).
All quantities are given in a.u.
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(1) n1 þ n2 ¼ N
Dx

(2) n1 > 0 and n2 > 0.

where N is the number of electrons and Dx is the spacing between grid points.
Applying PCA54 to the data-set, we nd the components shown in Fig. 5(a). The
principal components have the variances [2.19 � 10�3, 4.19 � 10�16]. The PCA
has encoded some physical insight: the rst principal component describes that if
an amount of charge is removed from one spacial position, it must be added to
the other spacial position. This means the charge is free to move along the x-axis.
Component 2 describes adding and removing charge from the system. As the
variance of this component is (numerically) zero, this indicates that the amount
of charge must be the same as the average system, therefore illustrating the
conservation of particle number. The range of these components in the data-set
gives us the positivity condition. This shows that in this simple case, PCA can
be used to encode both of the constraints on the density, due to their linearity. We
see that this trend continues to the 3, 4, 6, and 62 grid point data-sets: the PCA
nds that an N point system can be reduced to at least

N / N � 1 (12)

components losslessly, as the nal component is entirely determined by the
linear normalisation condition. Therefore the points of the density lie in an N
dimensional at plane.

When considering the solution to a quantum system we assume that V(x) can
take any form that gives a valid solution of the Schrödinger equation. But in
reality, when studying a class of systems, such as molecules, the range of
external potentials is much smaller, simply determined from the atomic
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.

https://doi.org/10.1039/d0fd00061b


Fig. 5 PCA being applied to the charge density. Panel (a) shows the density data values
of the 2-point data-set along with the two orthogonal principal components (PCs). PC1
corresponds to the charge moving between the two points, and PC2 corresponds to
changing the net value of charge. From the variances [2.19 � 10�3, 4.19 � 10�16] we see
that the PCA has learned that the density is constrained by the total charge. By looking at
the data this way we can see clearly that this is a linear constraint that the PCA can
capture exactly. The inset in panel (b) shows the logarithm (to the base 10) of the
variance of the PCA components for the 62-point data-set. The horizontal grey dotted
line illustrates the floating point numerical precision, and the vertical line indicates the
42 components needed to obtain such accuracy. Panel (b) shows an example 62-point
density for various numbers of included principal components, along with the exact
density for comparison.
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positions and charges. These potentials are constrained by the atomic nature of
matter within the Born–Oppenheimer framework. Constraining V(x) in this way
has the effect of also constraining the observables – maybe some of these
constraints are linear. If there are additional linear constraints, they will be
found by PCA. Our 62-point data-set has a characteristic well dened structure,
as it is formed from a Fourier series and conning potential, in addition to the
usual smoothness and continuous requirements of the charge density. This is in
contrast to the 2-point case where the potential is essentially 2 independent
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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random values, where there is no concept of smoothness. The inset of Fig. 5(b)
shows the logarithm (to the base 10) of the variance of each component in the
62-point case. This shows that only 41 components are necessary to describe the
density to numerical accuracy, much smaller than N � 1 (61). This has captured
these additional linear constraints. Fig. 5(b) shows how the structure of the
density is assembled by adding successive principal components. Only 15 are
needed to reduce the error to 10�6 a.u. This illustrates that using a constrained
class of external potentials, in addition to the usual smoothness constraints,
leads to additional constraints in the charge density, which in turn leads to
additional linear constraints that can be extracted using PCA.
4.2 Constraints of the density matrix

We now apply the PCA to the 1-RDM. We would expect the PCA to learn the same
linear constraints as for the density, as the 1-RDM contains the density along its
diagonal. Moreover, the PCA should learn the additional linear constraint of
symmetry, so altogether:

(1)
P
i
gii ¼

N
dx

(2) gii > 0 c i

(3) gij ¼ gji c i, j.
Where again we consider the 2-point case, and so the 1-RDM is represented by

4 values g11 ¼ g(x1, x1), g12 ¼ g(x1, x2), g21 ¼ g(x2, x1), g22 ¼ g(x2, x2). We will write
these in ‘attened’ form.

gij / gr[ij]. (13)

In this way, the 1-RDM becomes a 4-dimensional vector, and so, in our case, the
four elements of the 1-RDM are denoted by g11 / gr¼1, g12 / gr¼2, g21 / gr¼3,
g22 / gr¼4, where gr¼1 and gr¼4 are the diagonal elements. We apply PCA to this
2-point data-set of 1-RDMs. We observe that this yields 2 components with non-
zero variance. These are shown in Fig. 6(a), and compared to the components
of the density obtained in Section 4.1. We see that component 1, corresponding to
the direction of maximum variance in the data-set, is exactly the same as the
corresponding density component, with no non-zero values in the off-diagonal
terms. This can be thought of as moving along the at density plane. It is this
term (along with the fact that the component changing the net charge has
a variance of zero) that captures the rst 2 constraints, as in Section 4.1.
Component 2 has no non-zero values in the diagonal terms, but has non-zero
values in the off-diagonal terms. As indicated by arrow pair 1, the two off-
diagonal terms have the same value, and this has captured the symmetric
constraint. The PCA describes that if you set g12 to a given value, you must set g21

to exactly the same value.
We now apply the PCA to the 4-point data-set of the 1-RDM. This will inform

what compression the PCA can perform losslessly: can it encode the N2 elements
of the 1-RDM by only N, as in DFT? We nd that this is not the case, as in the 4-
point case the PCA can perform lossless compression from 42 elements to 9. In
general we nd that for an N-point system the PCA can perform lossless
compression to at least
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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Fig. 6 PCA being applied to the ‘flattened’ (see eqn (13)) 1-RDM. Panel (a) shows
a comparison of the non-zero variance 1-RDM components with those of the density for
the 2-point data-set. The vertical grey lines indicate the diagonal elements. For the first
principal component, the 1-RDM is identical to that of the density along the diagonal and
has an off-diagonal value of zero. The second principal component shows that the upper
and lower off-diagonal elements must always be equal (symmetry constraint indicated
with arrow pair 1). Panel (b) shows a comparison of the first 6 non-zero variance 1-RDM
principal components in comparison to the 3 non-zero variance density principal
components for the 4-point data-set. Again, the vertical grey lines indicate the four
diagonal elements. The principal components of the density again match the diagonal
elements of the first 3 principal components of the 1-RDM. While component 1 is zero for
the off-diagonal elements, components 2 and 3 have some small contributions from the
off-diagonal elements, for example the values indicated by arrow pair 2 (see discussion in
main text). The next three components have non-zero values in the off-diagonal direc-
tions, and the figure illustrates that gij ¼ gji (see for example arrow pair 3).

Faraday Discussions Paper

Faraday Discuss. This journal is © The Royal Society of Chemistry 2020

Pu
bl

is
he

d 
on

 1
2 

Ju
ne

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
Y

or
k 

on
 9

/1
8/

20
20

 1
0:

27
:5

8 
A

M
. 

View Article Online

https://doi.org/10.1039/d0fd00061b


Paper Faraday Discussions
Pu

bl
is

he
d 

on
 1

2 
Ju

ne
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Y
or

k 
on

 9
/1

8/
20

20
 1

0:
27

:5
8 

A
M

. 
View Article Online
N2/
NðN þ 1Þ

2
� 1: (14)

This is simply the number of diagonal elements minus 1 plus half the number of
off-diagonal elements. This is exactly the number that is derived from the three
constraints of the 1-RDM, and hence the PCA nds there are no additional linear
constraints we were missing. Fig. 6(b) shows the rst six non-zero principal
components of the 1-RDM. The diagonal values of the rst three components
correspond exactly to those of the density principal components, and the off-
diagonal values are almost zero, except for small features appearing in the
elements adjacent to diagonal ones, for example as indicated by arrow pair 2. The
remaining components describe only the off-diagonal elements, and once again,
due to values coming in pairs (see for example, arrow pair 3), reect the symmetry
constraint. The fact that some off-diagonal values are non-zero in the components
that correspond to the density is signicant as it allows the separation of the
linear and non-linear terms of g[n] in a domain specic way. This idea will be
developed further in Section 5.3.

As we found in Section 4.1 that additional linear constraints on the density
emerge when the structural constraints are applied to the external potential, and
due to the smoothness of the density, we would like to see to what extent this
extends to the 1-RDM, and to what extent this can be utilised. Fig. 7(a) shows a 2D
view of the rst 4 components of the 1-RDM for the 62-point data-set. We would
expect that, if there were no additional linear constraints, lossless compression to

622/
62ð62þ 1Þ

2
� 1 ¼ 1952 would be obtained. We nd that only 327 elements

are required within our numerical precision. This implies that, as we approach
the continuum by increasing the number of grid points, additional linear
constraints manifest in the 1-RDM. This is because each of the elements gij

cannot be treated independently, and there is an emerging additional structure
due to the smoothness and continuous properties of the wavefunction, and from
the constraints we impose on the external potential being formed from Fourier
components. These properties have no meaning in the 2-point system, and hence
do not appear. In Fig. 7(b) we compare the diagonals of these rst 4 components
Fig. 7 PCA being applied to the 1-RDM in the 62-point case. Panel (a) shows the first 4
principal components of the 1-RDM for the 62-point data-set, while panel (b) compares
the (scaled due to the PCA normalisation convention) diagonals of these components to
the first 4 principal components of the density.

This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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Fig. 8 The CAE (N2 / N / N2) being applied to eight example 1-RDMs (illustrated in
Fig. 2). The top row shows the original exact 1-RDM in each case (with the same axis as
Fig. 4). The second row shows the encoded representation of N values in each case. The
final row shows the decoder being applied to the compressed data, reconstructing the
original N2 1-RDM with a mean average error of 1.7 � 10�3 a.u. over the data-set.
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(scaled due to the PCA normalisation convention) with the rst 4 density
components: we see that they correspond exactly, but have signicant weights off
the diagonal elements gii. This allows us to describe the linear part of the func-
tional g[n] using our data-set. We will explore constructing functionals from this
premise in Section 5.3.

The PCA is unable to perform the reduction of elements N2 / N because it
imposes linearity. Without this constraint, we know this mapping is in principle
possible as the N2 elements of the 1-RDM are dened by only N, for example from
the external potential or charge density. We now transcend this request for
linearity by applying a CAE55 to the 1-RDM for the 62-point data-set, where we set
the number of values in the bottleneck layer to be 512. Applying PCA to the
bottleneck data, we further reduce the elements to N ¼ 62. This yields the nal
mapping of the model to be N2 / N/ N2 as desired. We nd that the model can
reconstruct the input to a mean average error of 1.7 � 10�3 a.u. (average error of
each gij). Fig. 8 illustrates the CAE being applied to eight example systems. Now
we have various machine learning models encoding both linear and non-linear
constraints for the 1-RDM, and we can utilise what has been learned to
construct approximations to the functional g[n].

5 Learning functionals
5.1 Feature engineering

Before moving on to deep learning of the 1-RDM functional, we rst investigate to
what extent we can assist machine learning models with pre-existing knowledge
of the density matrix in the simplest possible case. The cornerstone of this
process is feature engineering. Any appropriately complex neural network can
achieve correct predictions by a brute-force approach, but in order to obtain an
efficient model it is necessary to determine the best way in which the data should
be presented to the machine.

Let us start by considering the functional g[n] for a two-point system con-
taining two electrons of opposite spin. As the 1-RDM has the charge density along
its diagonal, and is symmetric, this problem reduces to nding the function

g21(g11,g22). (15)
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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The universal approximation theorem56 guarantees that a MLP with a sufficiently
large hidden layer can t any function. In order to ensure only a small hidden
layer is needed, we perform feature engineering. Let us start from the two-point
Hamiltonian diagonalized by the iDEA code (see Section 3):

Ĥ ¼ �t
X

s˛f[;Yg

�
ĉ
†
1;sĉ2;s þ ĉ

†
2;sĉ1;s

�
þU

X2
i¼1

n̂i;[n̂i;Y þU
0 ðn̂1;[n̂2;Y þ n̂1;Yn̂2;[Þ þ

X2
i¼1

vin̂i

The term U0 corresponds to the repulsion of the electrons when populating
different sites. The distance in between the points has been appropriately tuned
in order to make this term negligible with respect to the on-site repulsion, so that
the system can be modelled as an inhomogeneous Hubbard dimer model:

Ĥ ¼ �t
X

s˛f[;Yg

�
ĉ
†
1;sĉ2;s þ ĉ

†
2;sĉ1;s

�
þU

X2
i¼1

n̂i;[n̂i;Y þ
X2
i¼1

vin̂i (16)

Starting from this Hamiltonian, let us dene an adimensional quantity named
interaction strength

u ¼ U

4t
:

This number represents the relative importance of the on-site repulsion with
respect to the kinetic term. By performing a variational constrained minimization
of the Hamiltonian57,58 it is possible to extract the desired functional in the two
limiting cases of non-interacting electrons:

g0
21 ¼ g21ðu ¼ 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11ð2� g11Þ

p
; (17)

and strongly-interacting electrons:

gN
21 ¼ g21ðu/NÞ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðg11 � 1Þð2� g11Þ

p
if g11 $ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g11ð1� g11Þ
p

if g11\1
: (18)

In terms of the variable gm ¼ min{g11, 2 � g11} this becomes

gN
21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gm

���1� gm

���r
: (19)

This allows us to drastically reduce the complexity of the network needed for
tting the data. The relations can be written as

g21ðx1; x2Þ ¼ x1
u1x2

u2 ¼ eu1 log x1þu2 log x2þb; (20)

where ui ¼ 1/2 and b ¼ 0

ðx1; x2Þ ¼
� ð2gm; 1� gmÞ if strongly-interacting
ðg11;g22Þ if non-interacting:

We can then dene

OP ¼ f s

 X
k

ukx̂k þ b

!
; (21)

where fs(x)¼ ex,
P
k
ukx̂k is the weighted sum of the inputs, which are dened to be

x̂ ¼ log x, and the bias is given by b. OP, in the presented form, is the output of
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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Table 1 Results of the fitting procedure using the logarithmic perceptron as an average
over 20 example training sessions, along with the corresponding uncertainty

u1 u2 b

g0 0.5000 � 0.0002 0.5001 � 0.0001 (2.0 � 0.1)10�6

gN 0.480 � 0.003 0.480 � 0.002 (�4 � 8)10�5
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a perceptron, which is the simplest neural network, being composed of one single
neuron. This is termed a logarithmic perceptron.59 It is important to note that
a brute-force MLP could always yield an equally accurate result, but it would
require a large hidden layer of many perceptrons. In contrast this model needs
only one. The computational burden has been reduced to a three parameter
model to be tted by the logarithm of the original input data.

We train the logarithmic perceptron using the mean square error loss function
and the Adam optimizer with a learning rate of 10�3. The bias has been initialized
to 0 and a norm-2 bias regularizer with a coefficient of 10 has been introduced in
order to highly penalize any value of the bias different from zero. The average
parameters of 20 training sessions, computed both for the interacting and for the
non-interacting case are reported in Table 1. As expected, the machine has
learned that the bias is negligible§ with respect to the u-parameters, which have
been estimated to be ux 0.5. While in the non-interacting case the result is exact,
since the non-interacting condition is exactly reproducible, the strongly inter-
acting case only approximately matches the innitely interacting case, as this
condition is a limit.

We have determined that two analytical limits can be encoded in an engi-
neered minimally complex architecture. In this small system, this yields
a network that is vastly simpler than a brute-force MLP. The logarithmic per-
ceptron is engineered to optimally describe the relationship in between the
variables and so is a candidate building block to construct neural network models
for nding the desired functionals when more than two grid-points are involved.
This is because it could be possible to take advantage of the capability of this
perceptron to introduce the correct non-linearity, while possibly allowing us to
physically interpret the nal architecture as a nested combination of Hubbard
dimers for modelling systems with a higher number of grid-points.59

5.2 A perturbative approach

In Section 5.1 we have shown that the two-point system can be modeled as
a Hubbard dimer, and we have given the explicit functional form of the off-
diagonal term in the two limiting cases. This then denes a domain between
these two cases.

The starting point is to express eqn (17) and (18) in terms of the variable gm:

g0
21ðgmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gm � 1gm

2
p

(22)

gN
21ðgmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gm � 2gm

2
p

(23)
§ b ¼ o(u) since it is smaller than the precision with which the value of u is known.
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By observing the structure of these laws, we postulate that the functional form at
intermediate values of the interaction strength can be written as

g21ðgm; uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gm � cðgm; uÞgm

2
p

: (24)

The point gm ¼ 1 is a special value for the Hubbard dimer model since it corre-
sponds to the point at which the value of the density at the two sites is the same.
This can only occur when the dimer is symmetric (v1 ¼ v2). Performing the
diagonalization of the Hamiltonian of the symmetric dimer, the value of the off-
diagonal term of the 1-RDM as a function of the interaction strength is found to
be

g21ðgm ¼ 1; uÞ ¼ � u� ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p

1þ u
	
u� ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p 
: (25)

This relation xes the value of the c function at the symmetric point:

c(gm ¼ 1,u) ¼ 2 � [g21(gm ¼ 1,u)]2. (26)

Apart from this, nothing obvious can be said about the gm dependence of the c

function. However, we choose to write it as

cðgm; uÞ ¼ cðgm ¼ 1; uÞ þ Dcðgm; uÞ
¼ cð0ÞðuÞ þ Dcðgm; uÞ (27)

and the following functional constraints must necessarily be true8<:Dcðgm ¼ 1; uÞ ¼ 0

Dcðgm; u ¼ 0Þ ¼ 0

Dcðgm; u/NÞ ¼ 0:
(28)

The rst constraint, by denition, is valid at the symmetry point (gm¼ 1) whatever
the value of u. The second and third constraints are due to the fact that c(0)(u ¼
0) ¼ 1 and lim

u/N
cð0ÞðuÞ ¼ 2. Since this must be true for all the values of gm, the

correction must be zero.
Considering that the correction vanishes at both the borders of our domain,

and also at the symmetry point, and that crossing of any two curves of the off-
diagonal terms for different values of the interaction strength should not occur,
one would expect the correction to be a perturbation of the c(0)-model.

In Fig. 9(a) we directly compare the c(0)-model with the exact case.
As this has veried that the correction is indeed a perturbation of the proposed

model, we now employ a neural network architecture to determine this correc-
tion. We generate an additional data-set containing 600 000 couples (ĝm, û). For
a range of values of u, different potential landscapes have been dened and the
density matrix has been computed. The corresponding values of Dĉ(gm,u)gm

2

have been used as labels to be learned in the regression procedure. The quantities
have been redened as x̂¼ 10x and the factor of 10 has been introduced to ensure
the data is of a suitable scale for working in non-linearity with the selected acti-
vation functions. This activation function is chosen to be the hyperbolic tangent
as it is capable of reaching negative values. A reasonable choice for the number of
neurons in the three layers has been found to be (12, 12, 16). Due to the simplicity
of the model, some details of the correction are missed in the tting, in particular
the vanishing of the correction at the symmetry point and the vanishing of the
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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correction in the non-interacting limit. Rather than increasing the complexity of
the network, we prefer to impose this functional requirement by multiplying the
prediction by two exponential corrections. The equation for the correction reads

Dcðgm; uÞgm
2x

O
�bgm; û

�
10

 
1� e

�1�gm
lg

! 
1� e

� u
lu

!
(29)

where O(ĝm,û) is the prediction of the network while lg ¼ 0.001 and lu ¼ 0.004 are
two appropriately chosen numerical coefficients. Fig. 9(b) compares the inclusion
of this correction to the exact result, showing a signicant increase in accuracy. In
principle, this model can be used to construct approximations to many observ-
ables as functionals of the density, which are already known functionals of the
density matrix for these small Hubbard dimers,60 such as the kinetic energy,
exchange energy, and approximate total energy.

Up to this moment we have used machine learning tools in order to enhance
our theoretical models and to learn them. We will now move to larger grid-point
Fig. 9 Panel (a) shows the performance of the zeroth order c-model for a range of
interaction strengths u from 0 to 1, in comparison to the exact case. Panel (b) shows the c-
model with the machine learned correction. This demonstrates that the machine has
learned a significant improvement.

Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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systems, using the capability of the machine to learn from the data for the
construction of approximate functionals.
5.3 Learning functionals from constraints

We will now move to applying the insights into constraints we gained in Sections
4.1 and 4.2 to develop the functional g[n] for the 62-point data-set, and we will
then benchmark the resulting estimations of the 1-RDMs against the exact ones.
The functional we desire can be split into a linear (L), and non-linear (NL) term:

g[n] ¼ gL[n] + gNL[n]. (30)

In the following we will explicitly perform this linear decomposition. While the
linear term will be presented as an explicit functional of the density, the non-linear
one will be treated as a perturbation, and will be deep learned in Section 5.4.

In Section 4.2 we found that with PCA, due to additional structural constraints,
the principal components contained non-zero values in both the diagonal and
non-diagonal elements. In particular, the diagonals of the 1-RDM components
had a signicant correspondence to the density components (see Fig. 7). For
a given number of grid points, this correspondence holds for the rst n compo-
nents, where this value is determined by analysing the PCA components. The
purpose of this section is to exploit this correspondence in order to nd a linear
approximation of g[n]. We will begin by formalizing the connection in between
the two data-sets introduced in Sections 4.1 and 4.2. We will rst introduce the
principal component decomposition of the 1-RDM in the Be-basis introduced in
Section 2.3 and then, starting from the matrix representation of the density data-
set, we will express in formulas the content of Fig. 7. The starting point is the
expression of the 1-RDM components in terms of the known projections of the
principal components onto the basis dening the entries of the matrix (see
Section 2.3)

gi;j ¼
D
er½i;j�

���gE
¼
D
er½i;j�

���g0

E
þ
D
er½i;j�

���~gE
¼ ðg0Þi;j þ

XN2

k;r
0 ¼1

D
pk

���er0EDer0 ���~gEDer½i;j����pkE
where the her|pki coefficients are known aer the evaluation of the eigenvectors of
the covariance matrix.

Before proceeding, we introduce the density vectors:

n ¼ ½nðx1Þ; 0;.; 0; nðx2Þ; 0;.; nðxNÞ�˛ℝN2

(31)

and the corresponding data-set

P ¼
24 nð1Þ

«
nðTÞ

35: (32)

Performing a PCA on this data-set allows one to determine the average density
|n0i, the decomposition |ni ¼ |ñi + |n0i and the corresponding principal
components
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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|pni
��N2

i¼1
:

There are N2 components since they must form an orthonormal basis of the vector-
space. However, only the rstN� 1 principal components will be informative due to
the sparseness of the object dened and due to the normalization of the density (see
Section 4.2). By direct comparison of the principal directions in the two data-sets
(see Fig. 6), it is possible to observe that the rst n principal directions derived
from the G data-set can be put approximately in a scaled one-to-one correspondence
with the rst n principal directions of the sub-data-set P. In particular, let us dene
the modied principal directions and let us normalize them

jqii ¼
XN
j¼1

�
er½j;j�

��pi���er½j;j�� i ¼ 1;.;N � 1/
��qni � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffihqijqii

p jqii:

This denes an orthonormal basis for describing the diagonals of the matrices in
the ensemble. When the matrices under analysis are such that the non-vanishing
off-diagonal terms are mainly the ones closer to the corresponding non-vanishing
diagonal terms, it must be true that |qni i x �|pni i,{ where the equality has been
observed to be exact for the rst n principal components since the presence in the
density matrix of the off-diagonal terms leads to a reduction in priority of the
variation along the density. In fact, the main variations in the density are also
those that more strikingly characterize the 1-RDM. However, from the (n + 1)-th
component on, while the PCA on the density can provide more details on the
remaining changes in the density, orthogonal to the previous ones, the PCA on
the density matrix starts describing the variations along the off-diagonal terms
and the mapping between the two breaks down since the details of the density,
being less evident than those of the off-diagonal terms, are contained in a diluted
way in the remaining components.

We will now move to determining the actual expression of the linear func-
tional. First, we separate the mean-adjusted 1-RDM into four terms, dis-
tinguishing the diagonal from the off-diagonal contributions and taking into
account the different information content of the rst n principal component with
respect to the remaining ones. We will then dene a basis orthonormal in the
subspace of the densities while carrying off-diagonal information. This denition
will allow us to approximate the dominant contribution to the exact functional g
[n]. Let us start by writing ~g as the sum of four contributions:

|~gi ¼ |ñ#ni + |ñ>ni + |dg#ni + |dg>ni

These four terms correspond to the shied density reconstructed with the rst n
principal components, to the shied density reconstructed with the remaining
principal components, to the off-diagonal terms obtainable with the rst n prin-
cipal components, from now on termed free off-diagonal terms, and to the
remaining off-diagonal contributions. Considering or not these terms corre-
sponds to different levels of approximation. For our specic data-set it has been
shown that the moment at which the one-to-one mapping stops holding corre-
sponds to the number of principal components n at which the cumulative sum of
{ The � is due to possible differing conventions for the arbitrary directions in the PCA.
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the explained variance ratio reaches a value of 0.91. For this reason, neglecting the
term |~g>ni ¼ |ñ>ni + |dg>ni will be considered as a reasonable rst order approx-
imation, and we will be able to focus on the remaining two terms. This having
been said, let us dene a new set of vectors:

jqgi i^
1ffiffiffiffiffiffiffiffiffiffiffiffiffihqijqii

p jpii i ¼ 1;.;N � 1
�
qni
��qgj � ¼ di;j

These vectors contain the |qni i vectors and follow their normalization. Thanks to
their orthogonality, if the one-to-one mapping were valid for all the rst N � 1
components, they would be a complete basis in the densities-subspace while
varying the information on the free off-diagonal terms in the components not
shared with the basis f|qni igN�1

i¼1 . Even if the mapping is valid only for the rst n
principal components, this basis allows nonetheless for the construction of the
approximate 1-RDM carrying some information on the off-diagonal behavior,
while its diagonal behavior corresponds to the density reconstruction obtained by
looking at its nmost remarkable features. Let us add and subtract this term in gi,j:

gi;j ¼ ðg0Þi;j þ
�
er½i;j�

��~n# n

�þ �er½i;j���dg# n

�þ �er½i;j���~g. n

�þXn
k¼1

�
er½i;j�

��qgk��qgk��~n�
�
Xn
k¼1

�
er½i;j�

��qgk��qgk ��~n�
¼ ðg0Þi;j þ

Xn
k¼1

�
er½i;j�

��qgk��qgk ��~n�þ ðdgÞi;j

where

ðdgÞi;j ¼
�
er½i;j�

��~n# n

�þ ðdg# nÞi;j �
Xn
k¼1

�
er½i;j�

��qgk��qgk ��~n�þ ð~g. nÞi;j

This last quantity must be itself a functional of the density, where the functional
relation is non-linear and unknown. This having been done, the functional is now
expressed in the form presented in eqn (30). Considering the non-linear part, the
analysis on the principal values allows us to neglect the term (~g>n)i,j. The
remaining contribution is expected to be small since the basis f|qgk igN�1

k¼1 has been
dened with the exact intent of privileging the exact restoration of the density,
being the biggest contribution, while estimating the free off-diagonal terms. By
neglecting the gNL[n] ¼ dg term and by writing the resulting expression in terms
of the known projections of the principal components onto the Be-basis, the
linear functional is obtained

gi;j ¼ ðg0Þi;j þ
X

r
0
:

D
e
r
0

���~nEs0

Xn
k¼1

D
er½i;j�

���qgkEDqgk ���er0EDer0 ���~nE

¼ ðg0Þi;j þ
XN
s¼1

ðnðxsÞ � n0ðxsÞÞ
Xn
k¼1

D
er½i;j�

���qgkEDqgk ���er0 ½s;s�E

gi;j ½n� ¼ ðg0Þi;j þ
XN
s¼1

ðnðxsÞ � n0ðxsÞÞ
Xn
k¼1

D
q1k

���er0 ½s;s�EDer½i;j����q1kE (33)
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Writing this in the position basis for our 1-dimensional data-set, we arrive at our
approximate functional, and we term this the PCA functional:

gPCA
L [n(~x)](x,x0) ¼ g0(x,x

0) + P̂P̂n
�1(n(~x) � n0(~x))(x,x

0), (34)

where g0 is the average density matrix from the data-set (due to the PCA
convention to transform between mean-adjusted data), P̂ is the PCA 1-RDM
transformation, and (n � n0) is the mean adjusted charge density. P̂n

�1 is the
diagonal-only inverse PCA transform. This takes a mean-adjusted density, and
returns the n PCA components of g that when transformed to real space will
contain that density along the diagonal. This chooses our PCA components of the
density matrix so that it must have our given density along its diagonal. When the
PCA transform is applied to give the density matrix in real space we also obtain
off-diagonal elements linearly approximated by this inverse transformation. This
inverse has some very small eigenvalues due to some of the off-diagonal principal
components of g containing small diagonal values. We use singular value
decomposition to remove these eigenvalues in order to perform the inverse.

This approximate functional can be thought of as a domain specic linear
expansion, akin to a Taylor expansion. It is domain specic in two ways; rst, the
PCA orders components by variance, where the neglected terms are the smallest
possible by denition, and so it is engineered for an optimal linear approxima-
tion. Secondly, the region for which the expansion is accurate has been specied
by a data-set of systems of interest. This can be made analogous to domain
specicity in image compression: an autoencoder can be trained to yield optimal
compression on a specic data-set (domain) of images (for example faces). If it
were instead trained on all possible images, one would recover something akin to
JPEG compression, and hence autoencoders are thought of as domain specic
image compression. In this way of thinking, this approximate functional is
a domain specic linear expansion, as it has been trained on a representative
data-set of systems, which is a small subset of all possible systems.

Fig. 10 shows the application of the PCA functional to ve example systems
from the 62-point data-set, with n ¼ 8. We nd that a signicant contribution (on
average 64.41%) from the off-diagonal elements can be described by this linear
functional. This leaves only the non-linear term to be learned. In Section 5.4 we
will go beyond this linear term using a deep learning model.

5.4 Denoising autoencoders

We will now move to approximating g[n] for the 62-point systems using denoising
autoencoders (DAEs). DAEs are convolutional autoencoders used to perform noise
reduction in image processing.61 Usually CAEs are trained to reconstruct their
input exactly, but if noise is applied to the data-set, they can instead be trained to
construct the clean data from the data with noise added.When given a novel noisy
image they can reconstruct the image with the noise removed. We propose that
DAEs can be used to develop functionals if we treat the difference between an
approximate 1-RDM and the exact case as noise.

We have several candidates for what we can consider noise:
� By training our DAE to reconstruct the exact density matrix from the PCA

functional introduced in Section 5.3, we are considering the neglect of non-
linearity as noise.
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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Fig. 10 Evaluating our PCA linear functional for five sample systems from the 62-point
data-set. The axes are the same as in Fig. 4. The first row shows each system’s charge
densities. The second row shows the PCA functional being applied to each of the charge
densities. The third row shows the exact density matrix corresponding to each of the
densities. By taking themean average percentage difference taken over the entire data-set
we find that the linear functional takes account of 64.41% of the whole density matrix,
leaving only that remaining to be deep learned.
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� By training our DAE to reconstruct the exact density matrix from the purely
non-interacting density matrix, we are considering the neglect of the Coulomb
interaction as noise.

� By training our DAE to reconstruct the exact density matrix from the UHF, we
are considering as noise the neglect of correlation beyond that simulated by the
symmetry breaking.

By training a DAE in each of these three cases we can see which phenomena
are most amenable to being deep learned in this fashion. In Fig. 11(a) we show,
for equivalent DAE architectures, the mean absolute error in the predictions as
a function of the training cycle. This shows that the neglect of interaction is the
least applicable to being treated as noise. Treating the neglect of non-linearity
and neglect of correlation effects as noise are largely equally as applicable,
yielding a nal mean absolute error of 2.6 � 10�3 a.u. (in comparison to the
UHF approximation to the 1-RDM, which has a mean absolute error of 2.0 �
10�2 a.u. over the data-set). This error of 2.6 � 10�3 a.u. represents the mean
absolute error in the density matrix itself. When used to calculate some example
observables this corresponds to a relative percentage error of 9.2% in the
kinetic energy, and 9.1% in the exchange energy. These errors could be reduced
further with the application of high performance deep learning frameworks,
performed on high throughput GPUs. In Fig. 11(b) we illustrate the predictions
of each of the approximate deep learning methods for ve example systems in
comparison to the exact case. It is clear to see that the interaction is consid-
erably less amenable to machine learning than both the correlation effects
beyond UHF and non-linearity. And therefore, combining the linear functional
obtained in Section 5.3 with a denoising encoder yields an accurate approxi-
mation to the functional g[n].
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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Fig. 11 Contrasting the different quantities we can treat as noise when training a DAE.
Panel (a) shows the mean absolute error as a function of training cycle (where the DAE has
seen every training sample once). Treating the neglect of non-linearity and correlation as
noise converges to a mean absolute error of 2.6 � 10�3 a.u., whereas treating the neglect
of all interactions as noise converges to 8.2 � 10�3 a.u. Panel (b) shows the application of
these three deep learning methods to five example test systems in comparison to the
exact case.
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6 Conclusions

In conclusion, we have shown that insights into the one-body reduced density
matrix (1-RDM) can be gained using a variety of machine learning methods. We
show that by employing a large data-set of 1-RDMs, the machine can learn the
constraints underlying the data. Linear constraints are determined by principal
component analysis (PCA). The PCA illustrates that using a constrained class of
external potentials, in addition to the usual smoothness constraints, leads to
additional linear constraints in the charge density. Subsequently, non-linear
constraints can be learned from convolutional autoencoders (CAEs). We show
that these constraints can be utilised to build approximations to the 1-RDM as
a functional of the charge density. The PCA can be used to construct the linear
part of the functional utilizing linear constraints. Subsequently, the neglect of the
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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non-linear contribution can be considered as noise, which in turn can be rectied
using a denoising autoencoder (DAE). This approach yields accurate density
matrices as functions of the charge density when applied to exactly solvable
model systems. We examine which quantity can best be treated as noise in this
way when building functionals using DAEs, and hence which unknown term is
most amenable to machine learning. We nd that the treatment of interaction is
considerably more difficult than non-linearity or correlation effects beyond
unrestricted Hartree–Fock (UHF). We also show how existing knowledge of the
density matrix can be used to guide machine learning techniques, in particular
the construction of networks using logarithmic neurons, which is a candidate to
assemble more complex machine learning strategies. This two-way transfer of
knowledge between existing approaches and machine learning strategies is ex-
pected to help both the analytic design of new functionals, and numerical
approaches to materials computation based on machine learning.
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Maranto and L. Zdeborová, Rev. Mod. Phys., 2019, 91, 045002.
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.

https://doi.org/10.1039/d0fd00061b


Faraday Discussions Paper
Pu

bl
is

he
d 

on
 1

2 
Ju

ne
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Y
or

k 
on

 9
/1

8/
20

20
 1

0:
27

:5
8 

A
M

. 
View Article Online
17 J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller and K. Burke, Phys. Rev. Lett.,
2012, 108, 253002.

18 L. Li, T. E. Baker, S. R. White and K. Burke, Phys. Rev. B, 2016, 94, 245129.
19 L. Li, J. C. Snyder, I. M. Pelaschier, J. Huang, U.-N. Niranjan, P. Duncan,

M. Rupp, K.-R. Müller and K. Burke, Int. J. Quantum Chem., 2016, 116, 819–833.
20 J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98, 146401.
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